Credit Scoring and Risk Assessment
This document demonstrates the credit scoring and risk assessment capabilities available in the pypulate
library using the CreditScoring
class.
Overview
The CreditScoring
class provides a comprehensive suite of credit risk models and assessment tools:
- Altman Z-Score for bankruptcy prediction
- Merton Model for default probability
- Debt Service Coverage Ratio (DSCR)
- Weight of Evidence (WOE) and Information Value (IV)
- Logistic Regression Scoring
- Credit Scorecard Creation
- Credit Rating Transition Matrix
- Financial Ratios Analysis
- Expected Credit Loss (ECL) Calculation
- Risk-Based Loan Pricing
- Scoring Model Validation
- Loss Given Default (LGD) Estimation
- Exposure at Default (EAD) Calculation
Basic Usage
First, let's import the necessary components:
Corporate Credit Risk Assessment
Let's start with a basic corporate credit risk assessment using the Altman Z-Score model:
# Initialize the CreditScoring class
credit = CreditScoring()
# Company financial data
working_capital = 1200000
retained_earnings = 1500000
ebit = 800000
market_value_equity = 5000000
sales = 4500000
total_assets = 6000000
total_liabilities = 2500000
# Calculate Altman Z-Score
z_score_result = credit.altman_z_score(
working_capital=working_capital,
retained_earnings=retained_earnings,
ebit=ebit,
market_value_equity=market_value_equity,
sales=sales,
total_assets=total_assets,
total_liabilities=total_liabilities
)
print(f"Altman Z-Score: {z_score_result['z_score']:.2f}")
print(f"Risk Assessment: {z_score_result['risk_assessment']}")
Default Probability Estimation
The Merton model provides a structural approach to estimating default probability:
# Company data for Merton model
asset_value = 10000000
debt_face_value = 5000000
asset_volatility = 0.25
risk_free_rate = 0.03
time_to_maturity = 1.0
# Calculate default probability using Merton model
merton_result = credit.merton_model(
asset_value=asset_value,
debt_face_value=debt_face_value,
asset_volatility=asset_volatility,
risk_free_rate=risk_free_rate,
time_to_maturity=time_to_maturity
)
print(f"Probability of Default: {merton_result['probability_of_default']:.2%}")
print(f"Distance to Default: {merton_result['distance_to_default']:.2f}")
Debt Servicing Capacity
The Debt Service Coverage Ratio helps assess a borrower's ability to service debt:
# Debt service data
net_operating_income = 500000
total_debt_service = 300000
# Calculate DSCR
dscr_result = credit.debt_service_coverage_ratio(
net_operating_income=net_operating_income,
total_debt_service=total_debt_service
)
print(f"DSCR: {dscr_result['dscr']:.2f}")
print(f"Assessment: {dscr_result['assessment']}")
Credit Scorecard Development
Create a points-based credit scorecard for retail lending:
# Applicant features
features = {
"age": 35,
"income": 75000,
"years_employed": 5,
"debt_to_income": 0.3,
"previous_defaults": 0
}
# Feature weights (derived from statistical analysis)
weights = {
"age": 2.5,
"income": 3.2,
"years_employed": 4.0,
"debt_to_income": -5.5,
"previous_defaults": -25.0
}
# Feature offsets (reference points)
offsets = {
"age": 25,
"income": 50000,
"years_employed": 2,
"debt_to_income": 0.4,
"previous_defaults": 1
}
# Create scorecard
scorecard_result = credit.create_scorecard(
features=features,
weights=weights,
offsets=offsets,
scaling_factor=20,
base_score=600
)
print(f"Total Credit Score: {scorecard_result['total_score']:.0f}")
print(f"Risk Category: {scorecard_result['risk_category']}")
print("\nPoints Breakdown:")
for feature, points in scorecard_result['points_breakdown'].items():
print(f" {feature}: {points:.0f} points")
Expected Credit Loss Calculation
Calculate the expected credit loss for a loan:
# Loan risk parameters
pd = 0.05 # Probability of default
lgd = 0.4 # Loss given default
ead = 100000 # Exposure at default
time_horizon = 1.0 # 1 year
discount_rate = 0.03 # 3% discount rate
# Calculate ECL
ecl_result = credit.expected_credit_loss(
pd=pd,
lgd=lgd,
ead=ead,
time_horizon=time_horizon,
discount_rate=discount_rate
)
print(f"Expected Credit Loss: ${ecl_result['ecl']:.2f}")
print(f"ECL as % of Exposure: {ecl_result['ecl_percentage']:.2%}")
Risk-Based Loan Pricing
Determine the appropriate interest rate for a loan based on risk:
# Loan and risk parameters
loan_amount = 250000
term = 5 # 5 years
pd = 0.03 # Annual probability of default
lgd = 0.35 # Loss given default
funding_cost = 0.04 # Cost of funds
operating_cost = 0.01 # Operating costs as % of loan
capital_requirement = 0.08 # Capital requirement
target_roe = 0.15 # Target return on equity
# Calculate loan pricing
pricing_result = credit.loan_pricing(
loan_amount=loan_amount,
term=term,
pd=pd,
lgd=lgd,
funding_cost=funding_cost,
operating_cost=operating_cost,
capital_requirement=capital_requirement,
target_roe=target_roe
)
print(f"Recommended Interest Rate: {pricing_result['recommended_rate']:.2%}")
print(f"Effective Annual Rate: {pricing_result['effective_annual_rate']:.2%}")
print("\nRate Components:")
for component, value in pricing_result['components'].items():
print(f" {component}: {value:.2%}")
Credit Rating Transition Analysis
Analyze how credit ratings migrate over time:
# Historical credit ratings data
ratings_t0 = ['AAA', 'AA', 'A', 'BBB', 'BB', 'A', 'BBB', 'BB', 'B', 'CCC'] # Initial ratings
ratings_t1 = ['AA', 'A', 'BBB', 'BB', 'B', 'A', 'BBB', 'CCC', 'CCC', 'D'] # Ratings after 1 year
# Calculate transition matrix
transition_result = credit.transition_matrix(
ratings_t0=ratings_t0,
ratings_t1=ratings_t1
)
print("Credit Rating Transition Matrix (Probabilities):")
prob_matrix = transition_result['probability_matrix']
ratings = transition_result['ratings']
# Print the matrix with proper formatting
print(f"{'':5}", end="")
for r in ratings:
print(f"{r:6}", end="")
print()
for i, row in enumerate(prob_matrix):
print(f"{ratings[i]:5}", end="")
for val in row:
print(f"{val:.2f} ", end="")
print()
Financial Ratios Analysis
Analyze a company's financial health through key ratios:
# Company financial data
current_assets = 2000000
current_liabilities = 1200000
total_assets = 8000000
total_liabilities = 4000000
ebit = 1200000
interest_expense = 300000
net_income = 700000
total_equity = 4000000
sales = 6000000
# Calculate financial ratios
ratios_result = credit.financial_ratios(
current_assets=current_assets,
current_liabilities=current_liabilities,
total_assets=total_assets,
total_liabilities=total_liabilities,
ebit=ebit,
interest_expense=interest_expense,
net_income=net_income,
total_equity=total_equity,
sales=sales
)
print("Key Financial Ratios:")
for category, ratios in ratios_result.items():
if category != 'overall_assessment':
print(f"\n{category.replace('_', ' ').title()}:")
for ratio_name, value in ratios.items():
if ratio_name != 'assessment':
print(f" {ratio_name.replace('_', ' ').title()}: {value:.2f}")
print(f" Assessment: {ratios['assessment']}")
print(f"\nOverall Financial Health: {ratios_result['overall_assessment']}")
Scoring Model Validation
Validate the performance of a credit scoring model:
import numpy as np
# Simulated data: predicted scores and actual defaults
np.random.seed(42)
num_samples = 1000
predicted_scores = np.random.normal(650, 100, num_samples)
# Higher scores should correspond to lower default probability
default_probs = 1 / (1 + np.exp((predicted_scores - 600) / 50))
actual_defaults = np.random.binomial(1, default_probs)
# Validate the scoring model
validation_result = credit.scoring_model_validation(
predicted_scores=predicted_scores,
actual_defaults=actual_defaults,
score_bins=10
)
print(f"Gini Coefficient: {validation_result['gini']:.4f}")
print(f"KS Statistic: {validation_result['ks']:.4f}")
print(f"AUC-ROC: {validation_result['auc']:.4f}")
print(f"Accuracy: {validation_result['accuracy']:.4f}")
Loss Given Default Estimation
Estimate the loss given default for a secured loan:
# Loan and collateral data
collateral_value = 180000
loan_amount = 200000
liquidation_costs = 0.15
time_to_recovery = 1.5
# Calculate LGD
lgd_result = credit.loss_given_default(
collateral_value=collateral_value,
loan_amount=loan_amount,
liquidation_costs=liquidation_costs,
time_to_recovery=time_to_recovery
)
print(f"Loss Given Default: {lgd_result['lgd']:.2%}")
print(f"Recovery Rate: {lgd_result['recovery_rate']:.2%}")
print(f"Expected Loss Amount: ${lgd_result['expected_loss']:.2f}")
Exposure at Default Calculation
Calculate the exposure at default for a credit facility:
# Credit facility data
current_balance = 500000
undrawn_amount = 300000
credit_conversion_factor = 0.6
# Calculate EAD
ead_result = credit.exposure_at_default(
current_balance=current_balance,
undrawn_amount=undrawn_amount,
credit_conversion_factor=credit_conversion_factor
)
print(f"Exposure at Default: ${ead_result['ead']:.2f}")
print(f"EAD Components:")
print(f" Drawn Balance: ${ead_result['drawn_balance']:.2f}")
print(f" Expected Draw: ${ead_result['expected_draw']:.2f}")
Tracking Model Usage
The CreditScoring class maintains a history of all calculations:
# Get history of calculations
history = credit.get_history()
print(f"Number of calculations performed: {len(history)}")
print("\nRecent calculations:")
for i, entry in enumerate(history[-3:]):
print(f"{i+1}. Model: {entry['model']}")
Best Practices
1. Data Quality
- Data Cleaning: Ensure financial data is accurate and complete
- Outlier Treatment: Handle outliers appropriately
- Missing Values: Develop a consistent approach for missing data
2. Model Selection
- Purpose Fit: Choose models appropriate for the specific credit assessment need
- Complexity: Balance model complexity with interpretability
- Validation: Regularly validate model performance
3. Risk Management
- Stress Testing: Test models under adverse scenarios
- Sensitivity Analysis: Understand how changes in inputs affect outputs
- Model Limitations: Be aware of each model's limitations
4. Implementation
- Documentation: Document assumptions and methodologies
- Monitoring: Regularly monitor model performance
- Updating: Update models as economic conditions change
Common Pitfalls
1. Model Misuse
- Inappropriate Application: Using models outside their intended domain
- Overreliance: Relying too heavily on quantitative models without qualitative assessment
- Outdated Models: Using models that haven't been updated for current conditions
2. Data Issues
- Sample Bias: Training on non-representative data
- Look-ahead Bias: Using information not available at decision time
- Data Staleness: Using outdated financial information
3. Implementation Challenges
- Parameter Sensitivity: Results highly sensitive to input parameters
- Model Risk: Risk of model error or misspecification
- Interpretation Errors: Misinterpreting model outputs