Yield Curve Construction
The yield curve module provides functions for constructing and interpolating yield curves from market data. A yield curve represents the relationship between interest rates and maturities, which is essential for bond pricing, risk management, and economic analysis.
Usage in Pypulate
from pypulate.asset import construct_yield_curve, interpolate_rate
# Sample yield curve data
maturities = [0.1, 0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, 30] # in years
rates = [0.008, 0.01, 0.015, 0.02, 0.025, 0.028, 0.03, 0.031, 0.032, 0.033, 0.034] # as decimals
# Construct a yield curve with cubic spline interpolation
yield_curve = construct_yield_curve(
maturities=maturities,
rates=rates,
interpolation_method='cubic',
extrapolate=False
)
# Interpolate rates at specific maturities
rate_4y = interpolate_rate(yield_curve, 4)
rate_15y = interpolate_rate(yield_curve, 15)
print(f"4-year rate: {rate_4y:.2%}")
print(f"15-year rate: {rate_15y:.2%}")
# Access forward rates
forward_rates = yield_curve['forward_rates']
for fr in forward_rates:
print(f"Forward rate from {fr['start_maturity']}Y to {fr['end_maturity']}Y: {fr['forward_rate']:.2%}")
# Access curve characteristics
print(f"Yield curve steepness: {yield_curve['steepness']:.2%}")
print(f"Average rate: {yield_curve['average_rate']:.2%}")
# Check if maturity is within range before interpolating
min_maturity = yield_curve['min_maturity']
max_maturity = yield_curve['max_maturity']
maturity = 0.1 # The maturity you want to interpolate
if min_maturity <= maturity <= max_maturity:
rate = interpolate_rate(yield_curve, maturity)
print(f"{maturity}-year rate: {rate:.2%}")
else:
print(f"Cannot interpolate at maturity {maturity} (outside range [{min_maturity}, {max_maturity}])")
Functions
construct_yield_curve
Parameters
Parameter | Type | Description | Default |
---|---|---|---|
maturities |
list of float | Maturities in years for the observed rates | Required |
rates |
list of float | Observed interest rates (as decimals) | Required |
interpolation_method |
str | Method for interpolation ('linear', 'cubic', 'monotonic') | 'cubic' |
extrapolate |
bool | Whether to allow extrapolation beyond observed maturities | False |
Return Value
The construct_yield_curve
function returns a dictionary with the following keys:
Key | Type | Description |
---|---|---|
maturities |
list of float | Input maturities |
rates |
list of float | Input rates |
interpolation_method |
str | Method used for interpolation |
extrapolate |
bool | Whether extrapolation is allowed |
interpolate_func |
callable | Function that takes a maturity and returns the interpolated rate |
min_maturity |
float | Minimum maturity in the input data |
max_maturity |
float | Maximum maturity in the input data |
steepness |
float | Steepness of the yield curve (long-term rate minus short-term rate) |
average_rate |
float | Average of the input rates |
forward_rates |
list of dict | Implied forward rates between consecutive maturities |
Each element in the forward_rates
list is a dictionary with the following keys:
- start_maturity
: Starting maturity for the forward rate
- end_maturity
: Ending maturity for the forward rate
- forward_rate
: Implied forward rate for the period
interpolate_rate
Parameters
Parameter | Type | Description | Default |
---|---|---|---|
yield_curve |
dict | Yield curve object from construct_yield_curve |
Required |
maturity |
float | Maturity in years for which to interpolate the rate | Required |
Return Value
The interpolate_rate
function returns a float representing the interpolated interest rate at the specified maturity.
Interpolation Methods
The construct_yield_curve
function supports three interpolation methods:
Method | Description | Best Used For |
---|---|---|
linear |
Simple linear interpolation between points | Quick approximations, when simplicity is preferred |
cubic |
Cubic spline interpolation with smooth derivatives | Most yield curves, provides smooth transitions |
monotonic |
Monotonic cubic interpolation (PCHIP) | When preserving monotonicity is important |
Comprehensive Example
Here's a complete example demonstrating how to construct yield curves with different interpolation methods and visualize the results:
import numpy as np
import matplotlib.pyplot as plt
from pypulate.asset import construct_yield_curve, interpolate_rate
# Sample yield curve data (US Treasury yields as of a sample date)
maturities = [0.1, 0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, 30]
rates = [0.008, 0.01, 0.015, 0.02, 0.025, 0.028, 0.03, 0.031, 0.032, 0.033, 0.034]
# Construct yield curves with different interpolation methods
linear_curve = construct_yield_curve(maturities, rates, interpolation_method='linear')
cubic_curve = construct_yield_curve(maturities, rates, interpolation_method='cubic')
monotonic_curve = construct_yield_curve(maturities, rates, interpolation_method='monotonic')
# Create a dense set of maturities for smooth curve plotting
# Ensure we don't go below the minimum observed maturity
min_maturity = min(maturities)
max_maturity = max(maturities)
dense_maturities = np.linspace(min_maturity, max_maturity, 100)
# Get interpolated rates for each method
linear_rates = [interpolate_rate(linear_curve, t) for t in dense_maturities]
cubic_rates = [interpolate_rate(cubic_curve, t) for t in dense_maturities]
monotonic_rates = [interpolate_rate(monotonic_curve, t) for t in dense_maturities]
# Plot the results
plt.figure(figsize=(12, 8))
# Plot the actual data points
plt.scatter(maturities, rates, color='black', label='Observed Rates', zorder=3)
# Plot the interpolated curves
plt.plot(dense_maturities, linear_rates, 'r-', label='Linear Interpolation', linewidth=2)
plt.plot(dense_maturities, cubic_rates, 'b-', label='Cubic Spline Interpolation', linewidth=2)
plt.plot(dense_maturities, monotonic_rates, 'g--', label='Monotonic Interpolation', linewidth=2)
# Add labels and title
plt.xlabel('Maturity (years)')
plt.ylabel('Interest Rate')
plt.title('Yield Curve Construction with Different Interpolation Methods')
plt.grid(True, alpha=0.3)
plt.legend()
# Format y-axis as percentage
plt.gca().yaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'{x:.1%}'))
plt.tight_layout()
plt.show()
# Calculate and plot forward rates
plt.figure(figsize=(12, 8))
# Extract forward rates
forward_maturities = [(fr['start_maturity'] + fr['end_maturity']) / 2 for fr in cubic_curve['forward_rates']]
forward_rates_values = [fr['forward_rate'] for fr in cubic_curve['forward_rates']]
# Plot spot rates and forward rates
plt.plot(dense_maturities, cubic_rates, 'b-', label='Spot Rates (Cubic)', linewidth=2)
plt.step(forward_maturities, forward_rates_values, 'r-', label='Forward Rates', linewidth=2, where='mid')
plt.scatter(maturities, rates, color='black', label='Observed Spot Rates', zorder=3)
plt.xlabel('Maturity (years)')
plt.ylabel('Interest Rate')
plt.title('Spot Rates vs. Forward Rates')
plt.grid(True, alpha=0.3)
plt.legend()
plt.gca().yaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'{x:.1%}'))
plt.tight_layout()
plt.show()
# Demonstrate extrapolation
# Create a yield curve that allows extrapolation
extrapolating_curve = construct_yield_curve(maturities, rates, interpolation_method='cubic', extrapolate=True)
non_extrapolating_curve = construct_yield_curve(maturities, rates, interpolation_method='cubic', extrapolate=False)
# Create extended maturities for extrapolation demonstration
# Extend beyond the observed range (both shorter and longer maturities)
extended_maturities = np.linspace(0.05, 50, 100)
# Get interpolated/extrapolated rates with proper error handling
extrapolated_rates = []
for t in extended_maturities:
try:
# Try to get the rate, which will work for the extrapolating curve
rate = interpolate_rate(extrapolating_curve, t)
extrapolated_rates.append(rate)
except ValueError:
# If extrapolation is not allowed and we're outside the range, use NaN
extrapolated_rates.append(np.nan)
# Plot extrapolation
plt.figure(figsize=(12, 8))
plt.scatter(maturities, rates, color='black', label='Observed Rates', zorder=3)
plt.plot(extended_maturities, extrapolated_rates, 'b-', label='Cubic Spline with Extrapolation', linewidth=2)
# Add vertical lines at the minimum and maximum observed maturities
plt.axvline(x=min_maturity, color='r', linestyle='--', label=f'Min Observed Maturity ({min_maturity}Y)')
plt.axvline(x=max_maturity, color='r', linestyle='--', label=f'Max Observed Maturity ({max_maturity}Y)')
plt.xlabel('Maturity (years)')
plt.ylabel('Interest Rate')
plt.title('Yield Curve Extrapolation')
plt.grid(True, alpha=0.3)
plt.legend()
plt.gca().yaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'{x:.1%}'))
plt.tight_layout()
plt.show()
# Calculate discount factors from the yield curve
def calculate_discount_factors(yield_curve, maturities):
discount_factors = []
for t in maturities:
# Only calculate for maturities within the valid range
if yield_curve['min_maturity'] <= t <= yield_curve['max_maturity']:
rate = interpolate_rate(yield_curve, t)
discount_factor = 1 / (1 + rate) ** t
discount_factors.append((t, discount_factor))
return discount_factors
# Calculate discount factors for the cubic yield curve
discount_factors = calculate_discount_factors(cubic_curve, dense_maturities)
discount_maturities = [df[0] for df in discount_factors]
discount_values = [df[1] for df in discount_factors]
# Plot discount factors
plt.figure(figsize=(12, 8))
plt.plot(discount_maturities, discount_values, 'g-', linewidth=2)
plt.xlabel('Maturity (years)')
plt.ylabel('Discount Factor')
plt.title('Discount Factors Derived from the Yield Curve')
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# Example of safely handling extrapolation
def safe_interpolate(yield_curve, maturity):
"""Safely interpolate a rate, handling out-of-range maturities."""
min_maturity = yield_curve['min_maturity']
max_maturity = yield_curve['max_maturity']
if min_maturity <= maturity <= max_maturity:
return interpolate_rate(yield_curve, maturity)
elif yield_curve['extrapolate']:
# Extrapolation is allowed, but we'll print a warning
rate = interpolate_rate(yield_curve, maturity)
print(f"Warning: Extrapolating at maturity {maturity}Y (outside [{min_maturity}Y, {max_maturity}Y])")
return rate
else:
# Extrapolation not allowed, return None or raise an exception
print(f"Cannot interpolate at maturity {maturity}Y (outside [{min_maturity}Y, {max_maturity}Y])")
return None
# Example usage of safe interpolation
test_maturities = [0.05, 0.1, 1, 5, 30, 40]
for m in test_maturities:
rate = safe_interpolate(cubic_curve, m)
if rate is not None:
print(f"{m}-year rate: {rate:.2%}")
Example Output
4-year rate: 2.93%
15-year rate: 3.25%
Forward rate from 0.25Y to 0.5Y: 2.01%
Forward rate from 0.5Y to 1Y: 2.51%
Forward rate from 1Y to 2Y: 3.01%
Forward rate from 2Y to 3Y: 3.41%
Forward rate from 3Y to 5Y: 3.44%
Forward rate from 5Y to 7Y: 3.21%
Forward rate from 7Y to 10Y: 3.37%
Forward rate from 10Y to 20Y: 3.40%
Forward rate from 20Y to 30Y: 3.50%
Yield curve steepness: 2.40%
Average rate: 2.63%
Visualizations
Yield Curve Construction
This chart shows the observed yield curve data points and the interpolated curves using different methods (linear, cubic spline, and monotonic).
Spot Rates vs. Forward Rates
This chart compares the spot rates (yield curve) with the implied forward rates between consecutive maturities.
Yield Curve Extrapolation
This chart demonstrates how the yield curve can be extrapolated beyond the range of observed maturities when the extrapolate
parameter is set to True
.
Discount Factors
This chart shows the discount factors derived from the yield curve, which are used for discounting future cash flows in bond pricing and other applications.
Practical Applications
Yield curve construction and interpolation are used for:
- Bond Pricing: Discounting cash flows at the appropriate spot rates
- Fixed Income Analysis: Analyzing the term structure of interest rates
- Risk Management: Calculating duration, convexity, and other risk measures
- Derivatives Pricing: Valuing interest rate derivatives
- Economic Analysis: Interpreting the shape of the yield curve as an economic indicator
- Monetary Policy: Understanding the impact of central bank actions
- Portfolio Management: Constructing fixed income portfolios with specific duration targets
Limitations
- Interpolation Artifacts: Different interpolation methods can produce different results, especially between observed data points
- Extrapolation Risk: Extrapolating beyond the range of observed maturities can lead to unrealistic rates
- Data Quality: The quality of the constructed yield curve depends on the quality and coverage of the input data
- Cubic Spline Oscillations: Cubic spline interpolation can sometimes produce oscillations that don't reflect market expectations
- Forward Rate Calculation: The calculation of forward rates assumes a specific compounding convention
Extensions
- Zero-Coupon Yield Curve: Converting coupon bond yields to zero-coupon yields
- Bootstrapping: Building a yield curve from coupon-bearing instruments
- Parametric Models: Using models like Nelson-Siegel or Svensson for smoother yield curves
- Real Yield Curves: Constructing inflation-adjusted yield curves
- Multi-Currency Yield Curves: Building and comparing yield curves across different currencies