Skip to content

Mean Inversion Pricing

The mean inversion pricing module provides functions for pricing options on mean-reverting assets using the Ornstein-Uhlenbeck process. This model is particularly useful for commodities, interest rates, volatility indices, and other assets that tend to revert to a long-term mean level over time.

Usage in Pypulate

from pypulate.asset import mean_inversion_pricing, analytical_mean_inversion_option

# Price a call option on a mean-reverting asset using Monte Carlo simulation
mc_result = mean_inversion_pricing(
    current_price=50,
    long_term_mean=55,
    mean_reversion_rate=2.5,
    volatility=0.3,
    time_to_expiry=1.0,
    risk_free_rate=0.05,
    strike_price=52,
    option_type='call',
    simulations=10000,
    seed=42
)

# Price the same option using the analytical approximation
analytical_result = analytical_mean_inversion_option(
    current_price=50,
    long_term_mean=55,
    mean_reversion_rate=2.5,
    volatility=0.3,
    time_to_expiry=1.0,
    risk_free_rate=0.05,
    strike_price=52,
    option_type='call'
)

# Compare the results
print(f"Monte Carlo Price: ${mc_result['price']:.2f}")
print(f"Analytical Price: ${analytical_result['price']:.2f}")
print(f"Difference: ${abs(mc_result['price'] - analytical_result['price']):.2f}")

# Access additional information
print(f"Expected price at expiry: ${mc_result['expected_price_at_expiry']:.2f}")
print(f"Half-life of mean reversion: {mc_result['half_life']:.2f} years")

Functions

mean_inversion_pricing

This function implements the Ornstein-Uhlenbeck process to model mean-reverting assets and prices options using Monte Carlo simulation.

Parameters

Parameter Type Description Default
current_price float Current price of the underlying asset Required
long_term_mean float Long-term mean level that the asset price reverts to Required
mean_reversion_rate float Speed at which the asset price reverts to the long-term mean (annualized) Required
volatility float Volatility of the asset price (annualized) Required
time_to_expiry float Time to option expiration in years Required
risk_free_rate float Risk-free interest rate (annualized) Required
strike_price float Strike price of the option Required
option_type str Type of option ('call' or 'put') 'call'
simulations int Number of Monte Carlo simulations 10000
time_steps int Number of time steps in each simulation 252
seed int Random seed for reproducibility None

Return Value

The mean_inversion_pricing function returns a dictionary with the following keys:

Key Type Description
price float Calculated option price
standard_error float Standard error of the price estimate
confidence_interval tuple 95% confidence interval for the price (lower, upper)
current_price float Current price of the underlying asset
long_term_mean float Long-term mean level that the asset price reverts to
mean_reversion_rate float Speed at which the asset price reverts to the long-term mean
volatility float Volatility of the asset price
time_to_expiry float Time to option expiration in years
risk_free_rate float Risk-free interest rate
strike_price float Strike price of the option
option_type str Type of option ('call' or 'put')
simulations int Number of Monte Carlo simulations used
time_steps int Number of time steps used in each simulation
expected_price_at_expiry float Expected price of the asset at expiry
half_life float Half-life of mean reversion in years
price_statistics dict Statistics about the simulated final prices (mean, std, min, max, median)
sample_paths list Sample price paths for visualization (first 5 simulations)

analytical_mean_inversion_option

This function implements an analytical approximation for pricing European options on mean-reverting assets based on the Ornstein-Uhlenbeck process.

Parameters

Parameter Type Description Default
current_price float Current price of the underlying asset Required
long_term_mean float Long-term mean level that the asset price reverts to Required
mean_reversion_rate float Speed at which the asset price reverts to the long-term mean (annualized) Required
volatility float Volatility of the asset price (annualized) Required
time_to_expiry float Time to option expiration in years Required
risk_free_rate float Risk-free interest rate (annualized) Required
strike_price float Strike price of the option Required
option_type str Type of option ('call' or 'put') 'call'

Return Value

The analytical_mean_inversion_option function returns a dictionary with the following keys:

Key Type Description
price float Calculated option price
current_price float Current price of the underlying asset
long_term_mean float Long-term mean level that the asset price reverts to
mean_reversion_rate float Speed at which the asset price reverts to the long-term mean
volatility float Volatility of the asset price
time_to_expiry float Time to option expiration in years
risk_free_rate float Risk-free interest rate
strike_price float Strike price of the option
option_type str Type of option ('call' or 'put')
expected_price_at_expiry float Expected price of the asset at expiry
variance_at_expiry float Variance of the asset price at expiry
std_dev_at_expiry float Standard deviation of the asset price at expiry
half_life float Half-life of mean reversion in years
d1 float d1 parameter (similar to Black-Scholes)
d2 float d2 parameter (similar to Black-Scholes)

The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is a stochastic process that models mean-reverting behavior.

The key property of this process is that it tends to pull the asset price toward the long-term mean \(\mu\) at a rate proportional to the distance from the mean, controlled by the parameter \(\theta\).

Mean Reversion Rate and Half-Life

The mean reversion rate \(\theta\) determines how quickly the asset price reverts to its long-term mean. A higher value of \(\theta\) indicates faster mean reversion.

The half-life of mean reversion is the time it takes for the expected deviation from the long-term mean to decrease by half. It is calculated as:

\[\text{Half-life} = \frac{\ln(2)}{\theta}\]

For example, if \(\theta = 2.5\), the half-life is approximately 0.28 years (about 3.3 months), meaning that after this period, the expected deviation from the long-term mean will be half of its initial value.

Comprehensive Example

Here's a complete example demonstrating how to use the mean inversion pricing functions and visualize the results:

import numpy as np
import matplotlib.pyplot as plt
from pypulate.asset import mean_inversion_pricing, analytical_mean_inversion_option

# Define parameters
current_price = 50
long_term_mean = 55
mean_reversion_rate = 2.5
volatility = 0.3
risk_free_rate = 0.05
strike_price = 52
time_to_expiry = 1.0

# Price options with different maturities
maturities = np.linspace(0.1, 2.0, 20)
mc_call_prices = []
mc_put_prices = []
analytical_call_prices = []
analytical_put_prices = []

for t in maturities:
    # Monte Carlo pricing
    mc_call = mean_inversion_pricing(
        current_price=current_price,
        long_term_mean=long_term_mean,
        mean_reversion_rate=mean_reversion_rate,
        volatility=volatility,
        time_to_expiry=t,
        risk_free_rate=risk_free_rate,
        strike_price=strike_price,
        option_type='call',
        simulations=10000,
        seed=42
    )
    mc_put = mean_inversion_pricing(
        current_price=current_price,
        long_term_mean=long_term_mean,
        mean_reversion_rate=mean_reversion_rate,
        volatility=volatility,
        time_to_expiry=t,
        risk_free_rate=risk_free_rate,
        strike_price=strike_price,
        option_type='put',
        simulations=10000,
        seed=42
    )
    mc_call_prices.append(mc_call['price'])
    mc_put_prices.append(mc_put['price'])

    # Analytical pricing
    analytical_call = analytical_mean_inversion_option(
        current_price=current_price,
        long_term_mean=long_term_mean,
        mean_reversion_rate=mean_reversion_rate,
        volatility=volatility,
        time_to_expiry=t,
        risk_free_rate=risk_free_rate,
        strike_price=strike_price,
        option_type='call'
    )
    analytical_put = analytical_mean_inversion_option(
        current_price=current_price,
        long_term_mean=long_term_mean,
        mean_reversion_rate=mean_reversion_rate,
        volatility=volatility,
        time_to_expiry=t,
        risk_free_rate=risk_free_rate,
        strike_price=strike_price,
        option_type='put'
    )
    analytical_call_prices.append(analytical_call['price'])
    analytical_put_prices.append(analytical_put['price'])

# Plot option prices vs. maturity
plt.figure(figsize=(12, 8))
plt.plot(maturities, mc_call_prices, 'b-', label='MC Call', linewidth=2)
plt.plot(maturities, mc_put_prices, 'r-', label='MC Put', linewidth=2)
plt.plot(maturities, analytical_call_prices, 'b--', label='Analytical Call', linewidth=2)
plt.plot(maturities, analytical_put_prices, 'r--', label='Analytical Put', linewidth=2)
plt.grid(True, alpha=0.3)
plt.xlabel('Time to Expiry (years)')
plt.ylabel('Option Price ($)')
plt.title('Option Prices vs. Time to Expiry')
plt.legend()
plt.tight_layout()
plt.show()

# Analyze the impact of mean reversion rate
reversion_rates = np.linspace(0.5, 5.0, 10)
call_prices_by_reversion = []
half_lives = []

for rate in reversion_rates:
    result = analytical_mean_inversion_option(
        current_price=current_price,
        long_term_mean=long_term_mean,
        mean_reversion_rate=rate,
        volatility=volatility,
        time_to_expiry=time_to_expiry,
        risk_free_rate=risk_free_rate,
        strike_price=strike_price,
        option_type='call'
    )
    call_prices_by_reversion.append(result['price'])
    half_lives.append(result['half_life'])

# Plot option prices vs. mean reversion rate
plt.figure(figsize=(12, 8))
plt.subplot(2, 1, 1)
plt.plot(reversion_rates, call_prices_by_reversion, 'b-', marker='o', linewidth=2)
plt.grid(True, alpha=0.3)
plt.xlabel('Mean Reversion Rate (θ)')
plt.ylabel('Call Option Price ($)')
plt.title('Call Option Price vs. Mean Reversion Rate')

plt.subplot(2, 1, 2)
plt.plot(reversion_rates, half_lives, 'g-', marker='o', linewidth=2)
plt.grid(True, alpha=0.3)
plt.xlabel('Mean Reversion Rate (θ)')
plt.ylabel('Half-Life (years)')
plt.title('Half-Life vs. Mean Reversion Rate')
plt.tight_layout()
plt.show()

# Visualize sample price paths
result = mean_inversion_pricing(
    current_price=current_price,
    long_term_mean=long_term_mean,
    mean_reversion_rate=mean_reversion_rate,
    volatility=volatility,
    time_to_expiry=time_to_expiry,
    risk_free_rate=risk_free_rate,
    strike_price=strike_price,
    option_type='call',
    simulations=10000,
    time_steps=252,
    seed=42
)

# Extract sample paths
sample_paths = result['sample_paths']
time_points = np.linspace(0, time_to_expiry, len(sample_paths[0]))

# Plot sample paths
plt.figure(figsize=(12, 8))
for i, path in enumerate(sample_paths):
    plt.plot(time_points, path, alpha=0.7, label=f'Path {i+1}' if i == 0 else None)

# Add reference lines
plt.axhline(y=long_term_mean, color='k', linestyle='--', label='Long-term Mean')
plt.axhline(y=strike_price, color='r', linestyle='--', label='Strike Price')
plt.axhline(y=current_price, color='g', linestyle='--', label='Current Price')

plt.grid(True, alpha=0.3)
plt.xlabel('Time (years)')
plt.ylabel('Asset Price ($)')
plt.title('Sample Price Paths with Mean Reversion')
plt.legend()
plt.tight_layout()
plt.show()

# Compare with different long-term means
long_term_means = np.linspace(45, 65, 9)
call_prices_by_mean = []
put_prices_by_mean = []

for mean in long_term_means:
    call_result = analytical_mean_inversion_option(
        current_price=current_price,
        long_term_mean=mean,
        mean_reversion_rate=mean_reversion_rate,
        volatility=volatility,
        time_to_expiry=time_to_expiry,
        risk_free_rate=risk_free_rate,
        strike_price=strike_price,
        option_type='call'
    )
    put_result = analytical_mean_inversion_option(
        current_price=current_price,
        long_term_mean=mean,
        mean_reversion_rate=mean_reversion_rate,
        volatility=volatility,
        time_to_expiry=time_to_expiry,
        risk_free_rate=risk_free_rate,
        strike_price=strike_price,
        option_type='put'
    )
    call_prices_by_mean.append(call_result['price'])
    put_prices_by_mean.append(put_result['price'])

# Plot option prices vs. long-term mean
plt.figure(figsize=(12, 6))
plt.plot(long_term_means, call_prices_by_mean, 'b-', marker='o', label='Call Option', linewidth=2)
plt.plot(long_term_means, put_prices_by_mean, 'r-', marker='o', label='Put Option', linewidth=2)
plt.axvline(x=strike_price, color='k', linestyle='--', label='Strike Price')
plt.grid(True, alpha=0.3)
plt.xlabel('Long-term Mean ($)')
plt.ylabel('Option Price ($)')
plt.title('Option Prices vs. Long-term Mean')
plt.legend()
plt.tight_layout()
plt.show()

Example Output

Monte Carlo Price: $4.32
Analytical Price: $4.28
Difference: $0.04
Expected price at expiry: $53.09
Half-life of mean reversion: 0.28 years

Visualizations

Option Prices vs. Time to Expiry

This chart shows how option prices change with time to expiry for both call and put options, comparing Monte Carlo and analytical pricing methods.

Call Option Price vs. Mean Reversion Rate

This chart demonstrates how the call option price decreases as the mean reversion rate increases, reflecting the faster convergence to the long-term mean.

Half-Life vs. Mean Reversion Rate

This chart shows the inverse relationship between the mean reversion rate and the half-life of mean reversion.

Sample Price Paths with Mean Reversion

This chart displays sample price paths generated by the Ornstein-Uhlenbeck process, illustrating the mean-reverting behavior of the asset price.

Sample price mean reversion

Option Prices vs. Long-term Mean

This chart shows how call and put option prices change with the long-term mean level, with call prices increasing and put prices decreasing as the long-term mean increases.

long term mean reversion

Practical Applications

Mean inversion pricing is used for:

  1. Commodity Options: Pricing options on commodities like oil, natural gas, and agricultural products that exhibit mean-reverting behavior
  2. Interest Rate Derivatives: Valuing options on interest rates, which tend to revert to long-term levels
  3. Volatility Derivatives: Pricing options on volatility indices like VIX, which are mean-reverting
  4. Spread Options: Valuing options on price spreads between related assets
  5. Real Options: Analyzing investment opportunities in industries with mean-reverting prices
  6. Trading Strategies: Developing trading strategies based on mean reversion
  7. Risk Management: Assessing risk in portfolios with exposure to mean-reverting assets

Limitations

  1. Parameter Estimation: Accurately estimating the mean reversion rate and long-term mean can be challenging
  2. Model Risk: The Ornstein-Uhlenbeck process may not perfectly capture the dynamics of all mean-reverting assets
  3. Negative Prices: The basic model can allow negative prices, which may not be realistic for some assets
  4. Constant Parameters: The model assumes constant volatility and mean reversion rate, which may not hold in practice
  5. Analytical Approximation: The analytical pricing method is an approximation and may not be as accurate as Monte Carlo simulation for some parameter combinations

Extensions

  1. Square-Root Process: Using a square-root process (Cox-Ingersoll-Ross) to ensure non-negative prices
  2. Stochastic Volatility: Incorporating stochastic volatility into the mean-reverting process
  3. Regime-Switching: Allowing parameters to change based on market regimes
  4. Jump Diffusion: Adding jumps to the mean-reverting process to capture sudden price changes
  5. Multi-Factor Models: Using multiple factors to model the mean-reverting behavior
  6. American Options: Extending the model to price American options on mean-reverting assets