Mean Inversion Pricing
The mean inversion pricing module provides functions for pricing options on mean-reverting assets using the Ornstein-Uhlenbeck process. This model is particularly useful for commodities, interest rates, volatility indices, and other assets that tend to revert to a long-term mean level over time.
Usage in Pypulate
from pypulate.asset import mean_inversion_pricing, analytical_mean_inversion_option
# Price a call option on a mean-reverting asset using Monte Carlo simulation
mc_result = mean_inversion_pricing(
current_price=50,
long_term_mean=55,
mean_reversion_rate=2.5,
volatility=0.3,
time_to_expiry=1.0,
risk_free_rate=0.05,
strike_price=52,
option_type='call',
simulations=10000,
seed=42
)
# Price the same option using the analytical approximation
analytical_result = analytical_mean_inversion_option(
current_price=50,
long_term_mean=55,
mean_reversion_rate=2.5,
volatility=0.3,
time_to_expiry=1.0,
risk_free_rate=0.05,
strike_price=52,
option_type='call'
)
# Compare the results
print(f"Monte Carlo Price: ${mc_result['price']:.2f}")
print(f"Analytical Price: ${analytical_result['price']:.2f}")
print(f"Difference: ${abs(mc_result['price'] - analytical_result['price']):.2f}")
# Access additional information
print(f"Expected price at expiry: ${mc_result['expected_price_at_expiry']:.2f}")
print(f"Half-life of mean reversion: {mc_result['half_life']:.2f} years")
Functions
mean_inversion_pricing
This function implements the Ornstein-Uhlenbeck process to model mean-reverting assets and prices options using Monte Carlo simulation.
Parameters
Parameter | Type | Description | Default |
---|---|---|---|
current_price |
float | Current price of the underlying asset | Required |
long_term_mean |
float | Long-term mean level that the asset price reverts to | Required |
mean_reversion_rate |
float | Speed at which the asset price reverts to the long-term mean (annualized) | Required |
volatility |
float | Volatility of the asset price (annualized) | Required |
time_to_expiry |
float | Time to option expiration in years | Required |
risk_free_rate |
float | Risk-free interest rate (annualized) | Required |
strike_price |
float | Strike price of the option | Required |
option_type |
str | Type of option ('call' or 'put') | 'call' |
simulations |
int | Number of Monte Carlo simulations | 10000 |
time_steps |
int | Number of time steps in each simulation | 252 |
seed |
int | Random seed for reproducibility | None |
Return Value
The mean_inversion_pricing
function returns a dictionary with the following keys:
Key | Type | Description |
---|---|---|
price |
float | Calculated option price |
standard_error |
float | Standard error of the price estimate |
confidence_interval |
tuple | 95% confidence interval for the price (lower, upper) |
current_price |
float | Current price of the underlying asset |
long_term_mean |
float | Long-term mean level that the asset price reverts to |
mean_reversion_rate |
float | Speed at which the asset price reverts to the long-term mean |
volatility |
float | Volatility of the asset price |
time_to_expiry |
float | Time to option expiration in years |
risk_free_rate |
float | Risk-free interest rate |
strike_price |
float | Strike price of the option |
option_type |
str | Type of option ('call' or 'put') |
simulations |
int | Number of Monte Carlo simulations used |
time_steps |
int | Number of time steps used in each simulation |
expected_price_at_expiry |
float | Expected price of the asset at expiry |
half_life |
float | Half-life of mean reversion in years |
price_statistics |
dict | Statistics about the simulated final prices (mean, std, min, max, median) |
sample_paths |
list | Sample price paths for visualization (first 5 simulations) |
analytical_mean_inversion_option
This function implements an analytical approximation for pricing European options on mean-reverting assets based on the Ornstein-Uhlenbeck process.
Parameters
Parameter | Type | Description | Default |
---|---|---|---|
current_price |
float | Current price of the underlying asset | Required |
long_term_mean |
float | Long-term mean level that the asset price reverts to | Required |
mean_reversion_rate |
float | Speed at which the asset price reverts to the long-term mean (annualized) | Required |
volatility |
float | Volatility of the asset price (annualized) | Required |
time_to_expiry |
float | Time to option expiration in years | Required |
risk_free_rate |
float | Risk-free interest rate (annualized) | Required |
strike_price |
float | Strike price of the option | Required |
option_type |
str | Type of option ('call' or 'put') | 'call' |
Return Value
The analytical_mean_inversion_option
function returns a dictionary with the following keys:
Key | Type | Description |
---|---|---|
price |
float | Calculated option price |
current_price |
float | Current price of the underlying asset |
long_term_mean |
float | Long-term mean level that the asset price reverts to |
mean_reversion_rate |
float | Speed at which the asset price reverts to the long-term mean |
volatility |
float | Volatility of the asset price |
time_to_expiry |
float | Time to option expiration in years |
risk_free_rate |
float | Risk-free interest rate |
strike_price |
float | Strike price of the option |
option_type |
str | Type of option ('call' or 'put') |
expected_price_at_expiry |
float | Expected price of the asset at expiry |
variance_at_expiry |
float | Variance of the asset price at expiry |
std_dev_at_expiry |
float | Standard deviation of the asset price at expiry |
half_life |
float | Half-life of mean reversion in years |
d1 |
float | d1 parameter (similar to Black-Scholes) |
d2 |
float | d2 parameter (similar to Black-Scholes) |
The Ornstein-Uhlenbeck Process
The Ornstein-Uhlenbeck process is a stochastic process that models mean-reverting behavior.
The key property of this process is that it tends to pull the asset price toward the long-term mean \(\mu\) at a rate proportional to the distance from the mean, controlled by the parameter \(\theta\).
Mean Reversion Rate and Half-Life
The mean reversion rate \(\theta\) determines how quickly the asset price reverts to its long-term mean. A higher value of \(\theta\) indicates faster mean reversion.
The half-life of mean reversion is the time it takes for the expected deviation from the long-term mean to decrease by half. It is calculated as:
For example, if \(\theta = 2.5\), the half-life is approximately 0.28 years (about 3.3 months), meaning that after this period, the expected deviation from the long-term mean will be half of its initial value.
Comprehensive Example
Here's a complete example demonstrating how to use the mean inversion pricing functions and visualize the results:
import numpy as np
import matplotlib.pyplot as plt
from pypulate.asset import mean_inversion_pricing, analytical_mean_inversion_option
# Define parameters
current_price = 50
long_term_mean = 55
mean_reversion_rate = 2.5
volatility = 0.3
risk_free_rate = 0.05
strike_price = 52
time_to_expiry = 1.0
# Price options with different maturities
maturities = np.linspace(0.1, 2.0, 20)
mc_call_prices = []
mc_put_prices = []
analytical_call_prices = []
analytical_put_prices = []
for t in maturities:
# Monte Carlo pricing
mc_call = mean_inversion_pricing(
current_price=current_price,
long_term_mean=long_term_mean,
mean_reversion_rate=mean_reversion_rate,
volatility=volatility,
time_to_expiry=t,
risk_free_rate=risk_free_rate,
strike_price=strike_price,
option_type='call',
simulations=10000,
seed=42
)
mc_put = mean_inversion_pricing(
current_price=current_price,
long_term_mean=long_term_mean,
mean_reversion_rate=mean_reversion_rate,
volatility=volatility,
time_to_expiry=t,
risk_free_rate=risk_free_rate,
strike_price=strike_price,
option_type='put',
simulations=10000,
seed=42
)
mc_call_prices.append(mc_call['price'])
mc_put_prices.append(mc_put['price'])
# Analytical pricing
analytical_call = analytical_mean_inversion_option(
current_price=current_price,
long_term_mean=long_term_mean,
mean_reversion_rate=mean_reversion_rate,
volatility=volatility,
time_to_expiry=t,
risk_free_rate=risk_free_rate,
strike_price=strike_price,
option_type='call'
)
analytical_put = analytical_mean_inversion_option(
current_price=current_price,
long_term_mean=long_term_mean,
mean_reversion_rate=mean_reversion_rate,
volatility=volatility,
time_to_expiry=t,
risk_free_rate=risk_free_rate,
strike_price=strike_price,
option_type='put'
)
analytical_call_prices.append(analytical_call['price'])
analytical_put_prices.append(analytical_put['price'])
# Plot option prices vs. maturity
plt.figure(figsize=(12, 8))
plt.plot(maturities, mc_call_prices, 'b-', label='MC Call', linewidth=2)
plt.plot(maturities, mc_put_prices, 'r-', label='MC Put', linewidth=2)
plt.plot(maturities, analytical_call_prices, 'b--', label='Analytical Call', linewidth=2)
plt.plot(maturities, analytical_put_prices, 'r--', label='Analytical Put', linewidth=2)
plt.grid(True, alpha=0.3)
plt.xlabel('Time to Expiry (years)')
plt.ylabel('Option Price ($)')
plt.title('Option Prices vs. Time to Expiry')
plt.legend()
plt.tight_layout()
plt.show()
# Analyze the impact of mean reversion rate
reversion_rates = np.linspace(0.5, 5.0, 10)
call_prices_by_reversion = []
half_lives = []
for rate in reversion_rates:
result = analytical_mean_inversion_option(
current_price=current_price,
long_term_mean=long_term_mean,
mean_reversion_rate=rate,
volatility=volatility,
time_to_expiry=time_to_expiry,
risk_free_rate=risk_free_rate,
strike_price=strike_price,
option_type='call'
)
call_prices_by_reversion.append(result['price'])
half_lives.append(result['half_life'])
# Plot option prices vs. mean reversion rate
plt.figure(figsize=(12, 8))
plt.subplot(2, 1, 1)
plt.plot(reversion_rates, call_prices_by_reversion, 'b-', marker='o', linewidth=2)
plt.grid(True, alpha=0.3)
plt.xlabel('Mean Reversion Rate (θ)')
plt.ylabel('Call Option Price ($)')
plt.title('Call Option Price vs. Mean Reversion Rate')
plt.subplot(2, 1, 2)
plt.plot(reversion_rates, half_lives, 'g-', marker='o', linewidth=2)
plt.grid(True, alpha=0.3)
plt.xlabel('Mean Reversion Rate (θ)')
plt.ylabel('Half-Life (years)')
plt.title('Half-Life vs. Mean Reversion Rate')
plt.tight_layout()
plt.show()
# Visualize sample price paths
result = mean_inversion_pricing(
current_price=current_price,
long_term_mean=long_term_mean,
mean_reversion_rate=mean_reversion_rate,
volatility=volatility,
time_to_expiry=time_to_expiry,
risk_free_rate=risk_free_rate,
strike_price=strike_price,
option_type='call',
simulations=10000,
time_steps=252,
seed=42
)
# Extract sample paths
sample_paths = result['sample_paths']
time_points = np.linspace(0, time_to_expiry, len(sample_paths[0]))
# Plot sample paths
plt.figure(figsize=(12, 8))
for i, path in enumerate(sample_paths):
plt.plot(time_points, path, alpha=0.7, label=f'Path {i+1}' if i == 0 else None)
# Add reference lines
plt.axhline(y=long_term_mean, color='k', linestyle='--', label='Long-term Mean')
plt.axhline(y=strike_price, color='r', linestyle='--', label='Strike Price')
plt.axhline(y=current_price, color='g', linestyle='--', label='Current Price')
plt.grid(True, alpha=0.3)
plt.xlabel('Time (years)')
plt.ylabel('Asset Price ($)')
plt.title('Sample Price Paths with Mean Reversion')
plt.legend()
plt.tight_layout()
plt.show()
# Compare with different long-term means
long_term_means = np.linspace(45, 65, 9)
call_prices_by_mean = []
put_prices_by_mean = []
for mean in long_term_means:
call_result = analytical_mean_inversion_option(
current_price=current_price,
long_term_mean=mean,
mean_reversion_rate=mean_reversion_rate,
volatility=volatility,
time_to_expiry=time_to_expiry,
risk_free_rate=risk_free_rate,
strike_price=strike_price,
option_type='call'
)
put_result = analytical_mean_inversion_option(
current_price=current_price,
long_term_mean=mean,
mean_reversion_rate=mean_reversion_rate,
volatility=volatility,
time_to_expiry=time_to_expiry,
risk_free_rate=risk_free_rate,
strike_price=strike_price,
option_type='put'
)
call_prices_by_mean.append(call_result['price'])
put_prices_by_mean.append(put_result['price'])
# Plot option prices vs. long-term mean
plt.figure(figsize=(12, 6))
plt.plot(long_term_means, call_prices_by_mean, 'b-', marker='o', label='Call Option', linewidth=2)
plt.plot(long_term_means, put_prices_by_mean, 'r-', marker='o', label='Put Option', linewidth=2)
plt.axvline(x=strike_price, color='k', linestyle='--', label='Strike Price')
plt.grid(True, alpha=0.3)
plt.xlabel('Long-term Mean ($)')
plt.ylabel('Option Price ($)')
plt.title('Option Prices vs. Long-term Mean')
plt.legend()
plt.tight_layout()
plt.show()
Example Output
Monte Carlo Price: $4.32
Analytical Price: $4.28
Difference: $0.04
Expected price at expiry: $53.09
Half-life of mean reversion: 0.28 years
Visualizations
Option Prices vs. Time to Expiry
This chart shows how option prices change with time to expiry for both call and put options, comparing Monte Carlo and analytical pricing methods.
Call Option Price vs. Mean Reversion Rate
This chart demonstrates how the call option price decreases as the mean reversion rate increases, reflecting the faster convergence to the long-term mean.
Half-Life vs. Mean Reversion Rate
This chart shows the inverse relationship between the mean reversion rate and the half-life of mean reversion.
Sample Price Paths with Mean Reversion
This chart displays sample price paths generated by the Ornstein-Uhlenbeck process, illustrating the mean-reverting behavior of the asset price.
Option Prices vs. Long-term Mean
This chart shows how call and put option prices change with the long-term mean level, with call prices increasing and put prices decreasing as the long-term mean increases.
Practical Applications
Mean inversion pricing is used for:
- Commodity Options: Pricing options on commodities like oil, natural gas, and agricultural products that exhibit mean-reverting behavior
- Interest Rate Derivatives: Valuing options on interest rates, which tend to revert to long-term levels
- Volatility Derivatives: Pricing options on volatility indices like VIX, which are mean-reverting
- Spread Options: Valuing options on price spreads between related assets
- Real Options: Analyzing investment opportunities in industries with mean-reverting prices
- Trading Strategies: Developing trading strategies based on mean reversion
- Risk Management: Assessing risk in portfolios with exposure to mean-reverting assets
Limitations
- Parameter Estimation: Accurately estimating the mean reversion rate and long-term mean can be challenging
- Model Risk: The Ornstein-Uhlenbeck process may not perfectly capture the dynamics of all mean-reverting assets
- Negative Prices: The basic model can allow negative prices, which may not be realistic for some assets
- Constant Parameters: The model assumes constant volatility and mean reversion rate, which may not hold in practice
- Analytical Approximation: The analytical pricing method is an approximation and may not be as accurate as Monte Carlo simulation for some parameter combinations
Extensions
- Square-Root Process: Using a square-root process (Cox-Ingersoll-Ross) to ensure non-negative prices
- Stochastic Volatility: Incorporating stochastic volatility into the mean-reverting process
- Regime-Switching: Allowing parameters to change based on market regimes
- Jump Diffusion: Adding jumps to the mean-reverting process to capture sudden price changes
- Multi-Factor Models: Using multiple factors to model the mean-reverting behavior
- American Options: Extending the model to price American options on mean-reverting assets