Skip to content

Bond Pricing and Fixed Income Analysis

The bond pricing module provides functions for analyzing fixed income securities, including price calculation, yield to maturity determination, and duration/convexity analysis. These tools are essential for bond valuation and interest rate risk management.

Usage in Pypulate

from pypulate.asset import price_bond, yield_to_maturity, duration_convexity

# Calculate the price of a bond
price_result = price_bond(
    face_value=1000,
    coupon_rate=0.05,
    years_to_maturity=10,
    yield_to_maturity=0.06,
    frequency=2
)

# Calculate yield to maturity from a bond price
ytm_result = yield_to_maturity(
    price=950,
    face_value=1000,
    coupon_rate=0.05,
    years_to_maturity=10,
    frequency=2
)

# Calculate duration and convexity measures
risk_result = duration_convexity(
    face_value=1000,
    coupon_rate=0.05,
    years_to_maturity=10,
    yield_to_maturity=0.06,
    frequency=2
)

print(f"Bond Price: ${price_result['price']:.2f}")
print(f"Yield to Maturity: {ytm_result['yield_to_maturity']:.2%}")
print(f"Modified Duration: {risk_result['modified_duration']:.2f}")
print(f"Convexity: {risk_result['convexity']:.2f}")

Bond Pricing Function

Parameters

Parameter Type Description Default
face_value float Face value (par value) of the bond Required
coupon_rate float Annual coupon rate as a decimal (e.g., 0.05 for 5%) Required
years_to_maturity float Years until the bond matures Required
yield_to_maturity float Annual yield to maturity as a decimal (e.g., 0.06 for 6%) Required
frequency int Number of coupon payments per year 2 (semi-annual)

Return Value

The price_bond function returns a dictionary with the following keys:

Key Type Description
price float Calculated bond price
face_value float Face value of the bond
coupon_rate float Annual coupon rate
years_to_maturity float Years until maturity
yield_to_maturity float Annual yield to maturity
frequency int Number of coupon payments per year
coupon_payment float Amount of each coupon payment
current_yield float Current yield (annual coupon / price)
status str Bond status ("At par", "Trading at premium", or "Trading at discount")

Yield to Maturity Function

Parameters

Parameter Type Description Default
price float Current market price of the bond Required
face_value float Face value (par value) of the bond Required
coupon_rate float Annual coupon rate as a decimal (e.g., 0.05 for 5%) Required
years_to_maturity float Years until the bond matures Required
frequency int Number of coupon payments per year 2 (semi-annual)
initial_guess float Initial guess for YTM calculation 0.05 (5%)
precision float Desired precision for YTM calculation 1e-10
max_iterations int Maximum number of iterations 100

Return Value

The yield_to_maturity function returns a dictionary with the following keys:

Key Type Description
yield_to_maturity float Calculated yield to maturity
price float Bond price used in calculation
face_value float Face value of the bond
coupon_rate float Annual coupon rate
years_to_maturity float Years until maturity
frequency int Number of coupon payments per year
coupon_payment float Amount of each coupon payment
current_yield float Current yield (annual coupon / price)
status str Bond status ("At par", "Trading at premium", or "Trading at discount")

Duration and Convexity Function

Parameters

Parameter Type Description Default
face_value float Face value (par value) of the bond Required
coupon_rate float Annual coupon rate as a decimal (e.g., 0.05 for 5%) Required
years_to_maturity float Years until the bond matures Required
yield_to_maturity float Annual yield to maturity as a decimal (e.g., 0.06 for 6%) Required
frequency int Number of coupon payments per year 2 (semi-annual)

Return Value

The duration_convexity function returns a dictionary with the following keys:

Key Type Description
macaulay_duration float Macaulay duration in years
modified_duration float Modified duration (sensitivity to interest rate changes)
convexity float Convexity measure (curvature of price-yield relationship)
price float Calculated bond price
face_value float Face value of the bond
coupon_rate float Annual coupon rate
years_to_maturity float Years until maturity
yield_to_maturity float Annual yield to maturity
frequency int Number of coupon payments per year
price_change_1bp float Estimated price change for a 1 basis point increase in yield
price_change_100bp float Estimated price change for a 100 basis point increase in yield
convexity_adjustment_100bp float Convexity adjustment for a 100 basis point yield change
price_change_100bp_with_convexity float Price change with convexity adjustment

Risk Level Classification

Bonds can be classified based on their duration, which measures interest rate risk:

Modified Duration Risk Assessment
< 3 Low interest rate risk
3 - 7 Moderate interest rate risk
7 - 12 High interest rate risk
> 12 Very high interest rate risk

Comprehensive Example

Here's a complete example demonstrating how to use the bond pricing functions for analysis:

import numpy as np
import matplotlib.pyplot as plt
from pypulate.asset import price_bond, yield_to_maturity, duration_convexity

# Define bond parameters
face_value = 1000
coupon_rate = 0.05
years_to_maturity = 10
current_yield = 0.06
frequency = 2

# Calculate bond price
price_result = price_bond(
    face_value=face_value,
    coupon_rate=coupon_rate,
    years_to_maturity=years_to_maturity,
    yield_to_maturity=current_yield,
    frequency=frequency
)

# Calculate duration and convexity
risk_result = duration_convexity(
    face_value=face_value,
    coupon_rate=coupon_rate,
    years_to_maturity=years_to_maturity,
    yield_to_maturity=current_yield,
    frequency=frequency
)

# Print bond details
print("Bond Details:")
print(f"Face Value: ${face_value:.2f}")
print(f"Coupon Rate: {coupon_rate:.2%}")
print(f"Years to Maturity: {years_to_maturity:.1f}")
print(f"Yield to Maturity: {current_yield:.2%}")
print(f"Coupon Payment: ${price_result['coupon_payment']:.2f}")
print(f"Bond Price: ${price_result['price']:.2f}")
print(f"Current Yield: {price_result['current_yield']:.2%}")
print(f"Status: {price_result['status']}")

# Print risk measures
print("\nRisk Measures:")
print(f"Macaulay Duration: {risk_result['macaulay_duration']:.2f} years")
print(f"Modified Duration: {risk_result['modified_duration']:.2f}")
print(f"Convexity: {risk_result['convexity']:.2f}")
print(f"Price Change for 1bp Yield Increase: ${risk_result['price_change_1bp']:.4f}")
print(f"Price Change for 100bp Yield Increase: ${risk_result['price_change_100bp']:.2f}")
print(f"Convexity Adjustment for 100bp: ${risk_result['convexity_adjustment_100bp']:.2f}")
print(f"Price Change with Convexity: ${risk_result['price_change_100bp_with_convexity']:.2f}")

# Analyze price-yield relationship
yields = np.linspace(0.01, 0.12, 23)  # 1% to 12% in 0.5% steps
prices = []
linear_approx = []
quad_approx = []

for ytm in yields:
    # Calculate bond price at this yield
    result = price_bond(
        face_value=face_value,
        coupon_rate=coupon_rate,
        years_to_maturity=years_to_maturity,
        yield_to_maturity=ytm,
        frequency=frequency
    )
    prices.append(result['price'])

    # Linear approximation using duration
    delta_y = ytm - current_yield
    linear_price = price_result['price'] - risk_result['modified_duration'] * price_result['price'] * delta_y
    linear_approx.append(linear_price)

    # Quadratic approximation using duration and convexity
    quad_price = linear_price + 0.5 * risk_result['convexity'] * price_result['price'] * delta_y**2
    quad_approx.append(quad_price)

# Visualize price-yield relationship
plt.figure(figsize=(12, 8))

# Plot price-yield curve
plt.subplot(2, 2, 1)
plt.plot(yields * 100, prices, 'b-', linewidth=2, label='Actual Price')
plt.plot(yields * 100, linear_approx, 'r--', label='Duration Approximation')
plt.plot(yields * 100, quad_approx, 'g-.', label='Duration + Convexity')
plt.axvline(x=current_yield * 100, color='gray', linestyle='--', alpha=0.5)
plt.grid(True, alpha=0.3)
plt.xlabel('Yield to Maturity (%)')
plt.ylabel('Bond Price ($)')
plt.title('Bond Price vs. Yield to Maturity')
plt.legend()

# Analyze impact of maturity on duration
maturities = np.linspace(1, 30, 30)
durations_5pct = []
durations_8pct = []

for maturity in maturities:
    # Calculate duration for 5% coupon bond
    result_5pct = duration_convexity(
        face_value=face_value,
        coupon_rate=0.05,
        years_to_maturity=maturity,
        yield_to_maturity=0.05,
        frequency=frequency
    )
    durations_5pct.append(result_5pct['modified_duration'])

    # Calculate duration for 8% coupon bond
    result_8pct = duration_convexity(
        face_value=face_value,
        coupon_rate=0.08,
        years_to_maturity=maturity,
        yield_to_maturity=0.05,
        frequency=frequency
    )
    durations_8pct.append(result_8pct['modified_duration'])

# Plot maturity vs duration
plt.subplot(2, 2, 2)
plt.plot(maturities, durations_5pct, 'b-', linewidth=2, label='5% Coupon')
plt.plot(maturities, durations_8pct, 'r-', linewidth=2, label='8% Coupon')
plt.grid(True, alpha=0.3)
plt.xlabel('Years to Maturity')
plt.ylabel('Modified Duration')
plt.title('Duration vs. Maturity')
plt.legend()

# Analyze yield curve
years = [0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, 30]
current_yields = [0.0150, 0.0175, 0.0200, 0.0225, 0.0250, 0.0275, 0.0300, 0.0325, 0.0350, 0.0360]
steeper_yields = [0.0150, 0.0200, 0.0250, 0.0300, 0.0350, 0.0400, 0.0425, 0.0450, 0.0475, 0.0500]
flatter_yields = [0.0300, 0.0310, 0.0320, 0.0325, 0.0330, 0.0335, 0.0340, 0.0345, 0.0350, 0.0355]
inverted_yields = [0.0400, 0.0390, 0.0380, 0.0370, 0.0360, 0.0350, 0.0340, 0.0330, 0.0320, 0.0310]

# Plot yield curves
plt.subplot(2, 2, 3)
plt.plot(years, current_yields, 'b-', marker='o', label='Normal')
plt.plot(years, steeper_yields, 'r-', marker='s', label='Steeper')
plt.plot(years, flatter_yields, 'g-', marker='^', label='Flatter')
plt.plot(years, inverted_yields, 'm-', marker='d', label='Inverted')
plt.grid(True, alpha=0.3)
plt.xlabel('Years to Maturity')
plt.ylabel('Yield')
plt.title('Yield Curves')
plt.legend()

# Analyze impact of coupon rate on duration
coupon_rates = np.linspace(0.01, 0.10, 10)
durations_5y = []
durations_10y = []
durations_20y = []

for rate in coupon_rates:
    # 5-year bond
    result_5y = duration_convexity(
        face_value=face_value,
        coupon_rate=rate,
        years_to_maturity=5,
        yield_to_maturity=0.05,
        frequency=frequency
    )
    durations_5y.append(result_5y['modified_duration'])

    # 10-year bond
    result_10y = duration_convexity(
        face_value=face_value,
        coupon_rate=rate,
        years_to_maturity=10,
        yield_to_maturity=0.05,
        frequency=frequency
    )
    durations_10y.append(result_10y['modified_duration'])

    # 20-year bond
    result_20y = duration_convexity(
        face_value=face_value,
        coupon_rate=rate,
        years_to_maturity=20,
        yield_to_maturity=0.05,
        frequency=frequency
    )
    durations_20y.append(result_20y['modified_duration'])

# Plot coupon rate vs duration
plt.subplot(2, 2, 4)
plt.plot(coupon_rates * 100, durations_5y, 'b-', marker='o', label='5-Year Bond')
plt.plot(coupon_rates * 100, durations_10y, 'r-', marker='s', label='10-Year Bond')
plt.plot(coupon_rates * 100, durations_20y, 'g-', marker='^', label='20-Year Bond')
plt.grid(True, alpha=0.3)
plt.xlabel('Coupon Rate (%)')
plt.ylabel('Modified Duration')
plt.title('Duration vs. Coupon Rate')
plt.legend()

plt.tight_layout()
plt.show()

# Calculate yield to maturity for a given price
ytm_result = yield_to_maturity(
    price=925,
    face_value=face_value,
    coupon_rate=coupon_rate,
    years_to_maturity=years_to_maturity,
    frequency=frequency
)

print("\nYield to Maturity Analysis:")
print(f"Bond Price: ${ytm_result['price']:.2f}")
print(f"Calculated YTM: {ytm_result['yield_to_maturity']:.2%}")
print(f"Current Yield: {ytm_result['current_yield']:.2%}")
print(f"Status: {ytm_result['status']}")

Example Output

Bond Details:
Face Value: $1000.00
Coupon Rate: 5.00%
Years to Maturity: 10.0
Yield to Maturity: 6.00%
Coupon Payment: $25.00
Bond Price: $925.61
Current Yield: 5.40%
Status: Trading at discount
Risk Measures:
Macaulay Duration: 7.89 years
Modified Duration: 7.67
Convexity: 152.31
Price Change for 1bp Yield Increase: $-0.7095
Price Change for 100bp Yield Increase: $-70.95
Convexity Adjustment for 100bp: $7.05
Price Change with Convexity: $-63.90
Yield to Maturity Analysis:
Bond Price: $925.00
Calculated YTM: 6.01%
Current Yield: 5.41%
Status: Trading at discount

Visualizations

Bond Price vs. Yield to Maturity

This chart shows the non-linear relationship between bond price and yield. It also demonstrates how duration and convexity can be used to approximate price changes for different yields.

Bond Price vs Yield

Duration vs. Maturity

This chart illustrates how duration increases with maturity, and how higher coupon rates lead to lower duration for bonds with the same maturity.

Yield Curves

This chart shows different yield curve shapes (normal, steep, flat, and inverted) that can occur in the market, each reflecting different economic expectations.

Duration vs. Coupon Rate

This chart demonstrates how duration decreases as coupon rate increases, with the effect being more pronounced for longer-term bonds.

Theoretical Background

Bond Pricing

The price of a bond is the present value of all future cash flows, discounted at the yield to maturity:

\(P = \sum_{t=1}^{n} \frac{C}{(1+y/k)^{t}} + \frac{F}{(1+y/k)^{n}}\)

Where: - \(P\) is the bond price - \(C\) is the periodic coupon payment - \(F\) is the face value - \(y\) is the annual yield to maturity - \(k\) is the number of coupon payments per year - \(n\) is the total number of periods (\(n = k \times T\), where \(T\) is years to maturity)

Duration

Macaulay duration is the weighted average time to receive the bond's cash flows:

\(D_{Mac} = \frac{\sum_{t=1}^{n} \frac{t}{k} \times \frac{CF_t}{(1+y/k)^{t}}}{P}\)

Modified duration measures the sensitivity of bond price to yield changes:

\(D_{Mod} = \frac{D_{Mac}}{1+y/k}\)

For a small change in yield \(\Delta y\), the approximate price change is:

\(\Delta P \approx -D_{Mod} \times P \times \Delta y\)

Convexity

Convexity measures the curvature of the price-yield relationship:

\(C = \frac{1}{P} \sum_{t=1}^{n} \frac{t}{k} \times (\frac{t}{k} + \frac{1}{k}) \times \frac{CF_t}{(1+y/k)^{t}}\)

For larger yield changes, convexity improves the price change approximation:

\(\Delta P \approx -D_{Mod} \times P \times \Delta y + \frac{1}{2} \times C \times P \times (\Delta y)^2\)

Practical Applications

The bond pricing functions are used for:

  1. Bond Valuation: Determining the fair value of fixed income securities
  2. Yield Analysis: Calculating yield to maturity for investment decision-making
  3. Interest Rate Risk Management: Measuring duration and convexity to assess sensitivity to rate changes
  4. Portfolio Immunization: Matching asset and liability durations to protect against interest rate movements
  5. Yield Curve Analysis: Understanding the term structure of interest rates
  6. Bond Trading Strategies: Identifying relative value opportunities in the fixed income market

Limitations

The bond pricing model has several limitations:

  1. Constant Yield Assumption: Assumes the same yield for all future periods
  2. Reinvestment Risk: Assumes coupon payments can be reinvested at the yield to maturity
  3. Credit Risk: Does not account for the possibility of default
  4. Liquidity Risk: Does not consider potential liquidity premiums
  5. Call/Put Features: Basic model does not handle embedded options
  6. Floating Rate Bonds: Not designed for bonds with variable coupon rates

Extensions

Several extensions to the basic bond pricing model address its limitations:

  1. Option-Adjusted Spread (OAS): Accounts for embedded options in bonds
  2. Credit Spread Analysis: Incorporates credit risk into bond valuation
  3. Multi-Factor Term Structure Models: Models the entire yield curve and its evolution
  4. Key Rate Durations: Measures sensitivity to changes in specific points on the yield curve
  5. Effective Duration: Better handles bonds with embedded options or floating rates