Skip to content

Risk Measurement API

Risk measurement functions for portfolio analysis.

This module provides various risk metrics used in portfolio management and financial analysis.

capm_beta(portfolio_returns, market_returns)

Calculate the CAPM beta of a portfolio.

Parameters:

Name Type Description Default
portfolio_returns array - like

Array or list of portfolio returns

required
market_returns array - like

Array or list of market returns

required

Returns:

Type Description
float

CAPM beta

Notes

Beta measures the sensitivity of portfolio returns to market returns. It is the covariance of portfolio returns and market returns divided by the variance of market returns.

conditional_value_at_risk(returns, confidence_level=0.95, method='historical', current_value=1.0)

Calculate the Conditional Value-at-Risk (CVaR) of a portfolio.

Parameters:

Name Type Description Default
returns array - like

Array or list of returns

required
confidence_level float

Confidence level for CVaR calculation (e.g., 0.95 for 95% confidence)

0.95
method str

Method for calculating CVaR ('historical' or 'parametric')

'historical'
current_value float

Current value of the portfolio

1.0

Returns:

Type Description
float

Conditional Value-at-Risk (CVaR) as a positive number representing the potential loss

Notes

CVaR, also known as Expected Shortfall, measures the expected loss given that the loss exceeds the VaR threshold. It provides a more conservative risk measure than VaR.

correlation_matrix(returns_matrix)

Calculate the correlation matrix of returns.

Parameters:

Name Type Description Default
returns_matrix array - like

Matrix of returns where each column represents an asset

required

Returns:

Type Description
ndarray

Correlation matrix

Notes

The correlation matrix measures the strength of the relationship between returns of different assets, normalized to be between -1 and 1.

covariance_matrix(returns_matrix)

Calculate the covariance matrix of returns.

Parameters:

Name Type Description Default
returns_matrix array - like

Matrix of returns where each column represents an asset

required

Returns:

Type Description
ndarray

Covariance matrix

Notes

The covariance matrix measures how returns of different assets move together.

drawdown(returns, as_list=False)

Calculate the drawdown, maximum drawdown, and drawdown duration of returns.

Parameters:

Name Type Description Default
returns array - like

Array or list of returns

required
as_list bool

If True, returns the drawdowns as a list instead of numpy array

False

Returns:

Type Description
Tuple containing:
  • Array or list of drawdowns
  • Maximum drawdown (as a positive number)
  • Start index of maximum drawdown
  • End index of maximum drawdown
Notes

Drawdown measures the decline from a historical peak in cumulative returns.

semi_standard_deviation(returns, threshold=0.0, annualize=False, periods_per_year=252)

Calculate the semi-standard deviation of returns below a threshold.

Parameters:

Name Type Description Default
returns array - like

Array or list of returns

required
threshold float

Threshold below which to calculate semi-standard deviation

0.0
annualize bool

Whether to annualize the semi-standard deviation

False
periods_per_year int

Number of periods in a year (252 for daily returns, 12 for monthly, 4 for quarterly)

252

Returns:

Type Description
float

Semi-standard deviation of returns

Notes

Semi-standard deviation only considers returns below the threshold (typically 0), making it a measure of downside risk.

standard_deviation(returns, annualize=False, periods_per_year=252)

Calculate the standard deviation of returns.

Parameters:

Name Type Description Default
returns array - like

Array or list of returns

required
annualize bool

Whether to annualize the standard deviation

False
periods_per_year int

Number of periods in a year (252 for daily returns, 12 for monthly, 4 for quarterly)

252

Returns:

Type Description
float

Standard deviation of returns

Notes

Standard deviation measures the dispersion of returns around the mean. It is the square root of the variance.

tracking_error(portfolio_returns, benchmark_returns, annualize=False, periods_per_year=252)

Calculate the tracking error between portfolio returns and benchmark returns.

Parameters:

Name Type Description Default
portfolio_returns array - like

Array or list of portfolio returns

required
benchmark_returns array - like

Array or list of benchmark returns

required
annualize bool

Whether to annualize the tracking error

False
periods_per_year int

Number of periods in a year (252 for daily returns, 12 for monthly, 4 for quarterly)

252

Returns:

Type Description
float

Tracking error

Notes

Tracking error measures how closely a portfolio follows its benchmark. It is the standard deviation of the difference between portfolio and benchmark returns.

value_at_risk(returns, confidence_level=0.95, method='historical', parametric_mean=None, parametric_std=None, current_value=1.0)

Calculate the Value-at-Risk (VaR) of a portfolio.

Parameters:

Name Type Description Default
returns array - like

Array or list of returns

required
confidence_level float

Confidence level for VaR calculation (e.g., 0.95 for 95% confidence)

0.95
method str

Method for calculating VaR ('historical', 'parametric', or 'monte_carlo')

'historical'
parametric_mean float

Mean for parametric VaR calculation (if None, calculated from returns)

None
parametric_std float

Standard deviation for parametric VaR calculation (if None, calculated from returns)

None
current_value float

Current value of the portfolio

1.0

Returns:

Type Description
float

Value-at-Risk (VaR) as a positive number representing the potential loss

Notes

VaR measures the potential loss in value of a portfolio over a defined period for a given confidence interval.