Skip to content

Return Measurement API

Return measurement functions for portfolio analysis.

This module provides functions for measuring returns in various portfolio scenarios, including portfolios with no cash flows, portfolios with inflows and outflows, and market-neutral and leveraged portfolios.

All functions support both Python lists and NumPy arrays as inputs.

annualized_return(total_return, years)

Calculate the annualized return from a total return over a period of years.

Parameters:

Name Type Description Default
total_return float or array - like

The total return over the entire period as a decimal

required
years float or array - like

The number of years in the period

required

Returns:

Type Description
float or ndarray

The annualized return as a decimal If array inputs are provided, returns an array of annualized returns

Examples:

>>> annualized_return(0.2, 2)
0.09544511501033215
>>> annualized_return([0.2, 0.3, 0.15], [2, 3, 1.5])
[0.09544512, 0.09139288, 0.0976534 ]
>>> annualized_return(np.array([0.4, 0.5]), 2)
[0.18321596, 0.22474487]

arithmetic_return(prices)

Calculate the arithmetic average return from a series of prices.

Parameters:

Name Type Description Default
prices array - like

Array or list of prices

required

Returns:

Type Description
float

The arithmetic average return as a decimal

Examples:

>>> arithmetic_return([100, 105, 103, 108, 110])
0.024503647197821957

beta_adjusted_return(portfolio_return, benchmark_return, portfolio_beta)

Calculate the beta-adjusted return (alpha) of a portfolio.

Parameters:

Name Type Description Default
portfolio_return float or array - like

The return of the portfolio as a decimal

required
benchmark_return float or array - like

The return of the benchmark as a decimal

required
portfolio_beta float or array - like

The beta of the portfolio relative to the benchmark

required

Returns:

Type Description
float or ndarray

The beta-adjusted return (alpha) as a decimal If array inputs are provided, returns an array of beta-adjusted returns

Examples:

>>> beta_adjusted_return(0.12, 0.10, 1.2)
0.0
>>> beta_adjusted_return([0.12, 0.15], [0.10, 0.08], 1.2)
[0.   , 0.054]
>>> beta_adjusted_return(0.12, 0.10, [1.2, 1.5])
[ 0.  , -0.03]

dollar_weighted_return(cash_flows, cash_flow_dates, end_value)

Calculate the dollar-weighted return (internal rate of return) for a series of cash flows.

Parameters:

Name Type Description Default
cash_flows array - like

Array or list of cash flows (positive for inflows, negative for outflows)

required
cash_flow_dates array - like

Array or list of dates (in days) when each cash flow occurs

required
end_value float

The final value of the investment

required

Returns:

Type Description
float

The dollar-weighted return as a decimal

Examples:

>>> dollar_weighted_return([-1000, -500, 200], [0, 30, 60], 1400)
0.36174448410245186

geometric_return(prices)

Calculate the geometric average return from a series of prices.

Parameters:

Name Type Description Default
prices array - like

Array or list of prices

required

Returns:

Type Description
float

The geometric average return as a decimal

Examples:

>>> geometric_return([100, 105, 103, 108, 110])
0.02411368908444511

holding_period_return(prices, dividends=None)

Calculate the holding period return for a series of prices and optional dividends.

Parameters:

Name Type Description Default
prices array - like

Array or list of prices over the holding period

required
dividends array - like

Array or list of dividends paid during the holding period

None

Returns:

Type Description
float

The holding period return as a decimal

Examples:

>>> holding_period_return([100, 102, 105, 103, 106])
0.06
>>> holding_period_return([100, 102, 105, 103, 106], [0, 1, 0, 2, 0])
0.09

leveraged_return(unleveraged_return, leverage_ratio, borrowing_rate)

Calculate the return of a leveraged portfolio.

Parameters:

Name Type Description Default
unleveraged_return float or array - like

The return of the unleveraged portfolio as a decimal

required
leverage_ratio float or array - like

The leverage ratio (e.g., 2.0 for 2:1 leverage)

required
borrowing_rate float or array - like

The borrowing rate as a decimal

required

Returns:

Type Description
float or ndarray

The leveraged return as a decimal If array inputs are provided, returns an array of leveraged returns

Examples:

>>> leveraged_return(0.10, 2.0, 0.05)
0.15
>>> leveraged_return([0.10, 0.15], [2.0, 1.5], 0.05)
[0.15, 0.2 ]
>>> leveraged_return(0.10, [2.0, 3.0], [0.05, 0.06])
[0.15, 0.18]

linked_modified_dietz_return(period_returns)

Calculate the linked Modified Dietz return over multiple periods.

Parameters:

Name Type Description Default
period_returns array - like

Array or list of Modified Dietz returns for each period

required

Returns:

Type Description
float

The linked Modified Dietz return as a decimal

Examples:

>>> linked_modified_dietz_return([0.05, -0.02, 0.03, 0.04])
0.10226479999999993

log_return(end_value, start_value)

Calculate the logarithmic (continuously compounded) return between two values.

Parameters:

Name Type Description Default
end_value float or array - like

The ending value(s) of the investment

required
start_value float or array - like

The starting value(s) of the investment

required

Returns:

Type Description
float or ndarray

The logarithmic return If array inputs are provided, returns an array of logarithmic returns

Examples:

>>> log_return(105, 100)
0.04879016416929972
>>> log_return([105, 110, 108], [100, 100, 100])
array([0.04879016, 0.09531018, 0.07696104])
>>> log_return(np.array([105, 110]), np.array([100, 100]))
array([0.04879016, 0.09531018])

long_short_equity_return(long_portfolio_return, short_portfolio_return, long_exposure, short_exposure, risk_free_rate=0.0, short_rebate=0.0)

Calculate the return of a long-short equity portfolio.

Parameters:

Name Type Description Default
long_portfolio_return float or array - like

The return of the long portfolio as a decimal

required
short_portfolio_return float or array - like

The return of the short portfolio as a decimal

required
long_exposure float or array - like

The exposure of the long portfolio as a decimal of NAV

required
short_exposure float or array - like

The exposure of the short portfolio as a decimal of NAV

required
risk_free_rate float or array - like

The risk-free rate as a decimal

0.0
short_rebate float or array - like

The rebate received on short proceeds as a decimal

0.0

Returns:

Type Description
float or ndarray

The return of the long-short equity portfolio as a decimal If array inputs are provided, returns an array of long-short equity returns

Examples:

>>> long_short_equity_return(0.10, -0.05, 1.0, 0.5, 0.02, 0.01)
0.14
>>> long_short_equity_return([0.10, 0.12], [-0.05, -0.03], 1.0, 0.5, 0.02, 0.01)
array([0.14, 0.15])
>>> long_short_equity_return(0.10, -0.05, [1.0, 0.8], [0.5, 0.4], [0.02, 0.03], 0.01)
array([0.14 , 0.122])

market_neutral_return(long_return, short_return, long_weight=0.5, short_weight=0.5, short_borrowing_cost=0.0)

Calculate the return of a market-neutral portfolio with long and short positions.

Parameters:

Name Type Description Default
long_return float or array - like

The return of the long portfolio as a decimal

required
short_return float or array - like

The return of the short portfolio as a decimal

required
long_weight float or array - like

The weight of the long portfolio

0.5
short_weight float or array - like

The weight of the short portfolio

0.5
short_borrowing_cost float or array - like

The cost of borrowing for the short position as a decimal

0.0

Returns:

Type Description
float or ndarray

The market-neutral return as a decimal If array inputs are provided, returns an array of market-neutral returns

Examples:

>>> market_neutral_return(0.08, -0.05, 0.6, 0.4, 0.01)
0.064
>>> market_neutral_return([0.08, 0.10], [-0.05, -0.03], 0.6, 0.4, 0.01)
[0.064, 0.068]
>>> market_neutral_return(0.08, -0.05, [0.6, 0.7], [0.4, 0.3], [0.01, 0.02])
[0.064, 0.065]

modified_dietz_return(start_value, end_value, cash_flows, cash_flow_days, total_days)

Calculate the Modified Dietz return, which approximates the money-weighted return.

Parameters:

Name Type Description Default
start_value float

The starting value of the investment

required
end_value float

The ending value of the investment

required
cash_flows array - like

Array or list of cash flows (positive for inflows, negative for outflows)

required
cash_flow_days array - like

Array or list of days when each cash flow occurs (day 0 is the start)

required
total_days int

Total number of days in the period

required

Returns:

Type Description
float

The Modified Dietz return as a decimal

Examples:

>>> modified_dietz_return(1000, 1200, [100, -50], [10, 20], 30)
0.14285714285714285

money_weighted_return(cash_flows, cash_flow_times, final_value, initial_value=0, max_iterations=100, tolerance=1e-06)

Calculate the money-weighted return (internal rate of return) for a series of cash flows.

Parameters:

Name Type Description Default
cash_flows array - like

Array or list of cash flows (positive for inflows, negative for outflows)

required
cash_flow_times array - like

Array or list of times (in years) when each cash flow occurs

required
final_value float

The final value of the investment

required
initial_value float

The initial value of the investment

0
max_iterations int

Maximum number of iterations for the numerical solver

100
tolerance float

Convergence tolerance for the numerical solver

1e-6

Returns:

Type Description
float

The money-weighted return (IRR) as a decimal

Examples:

>>> money_weighted_return([-1000, -500, 1700], [0, 0.5, 1], 0)
0.16120409753798307

simple_return(end_value, start_value)

Calculate the simple return (percentage change) between two values.

Parameters:

Name Type Description Default
end_value float or array - like

The ending value(s) of the investment

required
start_value float or array - like

The starting value(s) of the investment

required

Returns:

Type Description
float or ndarray

The simple return as a decimal (e.g., 0.05 for 5%) If array inputs are provided, returns an array of simple returns

Examples:

>>> simple_return(105, 100)
0.05
>>> simple_return([105, 110, 108], [100, 100, 100])
array([0.05, 0.1 , 0.08])
>>> simple_return(np.array([105, 110]), np.array([100, 100]))
array([0.05, 0.1 ])

time_weighted_return(period_returns)

Calculate the time-weighted return from a series of period returns.

Parameters:

Name Type Description Default
period_returns array - like

Array or list of returns for each period

required

Returns:

Type Description
float

The time-weighted return as a decimal

Examples:

>>> time_weighted_return([0.05, -0.02, 0.03, 0.04])
0.10226479999999993

total_return_index(prices, dividends=None)

Calculate the total return index from a series of prices and optional dividends.

Parameters:

Name Type Description Default
prices array - like

Array or list of prices

required
dividends array - like

Array or list of dividends paid

None

Returns:

Type Description
ndarray

The total return index

Examples:

>>> total_return_index([100, 102, 105, 103, 106])
[100., 102., 105., 103., 106.]
>>> total_return_index([100, 102, 105, 103, 106], [0, 1, 0, 2, 0])
[100.        , 103.        , 106.02941176, 106.02941176,
   109.11764706]