Volatility API Reference
Volatility Measurement Functions
This module provides functions for measuring volatility in financial time series data.
atr(close, high, low, period=14)
Calculate Average True Range (ATR) over a specified period.
ATR measures market volatility by decomposing the entire range of an asset price.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
close
|
ndarray
|
Close prices |
required |
high
|
ndarray
|
High prices. If None, assumes close contains close prices and high=low=close |
required |
low
|
ndarray
|
Low prices. If None, assumes close contains close prices and high=low=close |
required |
period
|
int
|
Number of periods to calculate ATR |
14
|
Returns:
Type | Description |
---|---|
ndarray
|
ATR values |
bollinger_bands(data, period=20, std_dev=2.0)
Calculate Bollinger Bands over a specified period.
Bollinger Bands consist of a middle band (SMA), an upper band (SMA + kstd), and a lower band (SMA - kstd).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
ndarray
|
Input time series data |
required |
period
|
int
|
Number of periods for the moving average |
20
|
std_dev
|
float
|
Number of standard deviations for the upper and lower bands |
2.0
|
Returns:
Type | Description |
---|---|
tuple of numpy.ndarray
|
Tuple containing (upper_band, middle_band, lower_band) |
donchian_channels(data, high, low, period=20)
Calculate Donchian Channels over a specified period.
Donchian Channels consist of an upper band (highest high), a lower band (lowest low), and a middle band (average of upper and lower).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
ndarray
|
Input time series data (typically close prices) |
required |
high
|
ndarray
|
High prices. If None, uses data |
required |
low
|
ndarray
|
Low prices. If None, uses data |
required |
period
|
int
|
Number of periods for the channels |
20
|
Returns:
Type | Description |
---|---|
tuple of numpy.ndarray
|
Tuple containing (upper_channel, middle_channel, lower_channel) |
historical_volatility(data, period=21, annualization_factor=252)
Calculate historical volatility over a specified period.
Historical volatility is the standard deviation of log returns, typically annualized.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
ndarray
|
Input time series data |
required |
period
|
int
|
Number of periods to calculate volatility |
21
|
annualization_factor
|
int
|
Factor to annualize volatility (252 for daily data, 52 for weekly, 12 for monthly) |
252
|
Returns:
Type | Description |
---|---|
ndarray
|
Historical volatility values as percentage |
keltner_channels(close, high, low, period=20, atr_period=10, multiplier=2.0)
Calculate Keltner Channels over a specified period.
Keltner Channels consist of a middle band (EMA), an upper band (EMA + kATR), and a lower band (EMA - kATR).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
close
|
ndarray
|
Close prices |
required |
high
|
ndarray
|
High prices. If None, assumes close contains close prices and high=low=close |
required |
low
|
ndarray
|
Low prices. If None, assumes close contains close prices and high=low=close |
required |
period
|
int
|
Number of periods for the EMA |
20
|
atr_period
|
int
|
Number of periods for the ATR |
10
|
multiplier
|
float
|
Multiplier for the ATR |
2.0
|
Returns:
Type | Description |
---|---|
tuple of numpy.ndarray
|
Tuple containing (upper_channel, middle_channel, lower_channel) |
volatility_ratio(data, period=21, smooth_period=5)
Calculate Volatility Ratio over a specified period.
Volatility Ratio compares recent volatility to historical volatility. Values above 1 indicate increasing volatility, values below 1 indicate decreasing volatility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
ndarray
|
Input time series data |
required |
period
|
int
|
Number of periods for historical volatility |
21
|
smooth_period
|
int
|
Number of periods to smooth the ratio |
5
|
Returns:
Type | Description |
---|---|
ndarray
|
Volatility Ratio values |