Skip to content

Moving Averages API Reference

Moving Averages Module

This module provides various moving average implementations for financial time series analysis. All functions use numpy arrays for input and output to ensure high performance.

alma(data, period=9, offset=0.85, sigma=6.0)

Arnaud Legoux Moving Average (ALMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9
offset float

Controls tradeoff between smoothness and responsiveness (0-1)

0.85
sigma float

Controls the filter width

6.0

Returns:

Type Description
NDArray[float64]

Arnaud Legoux moving average values

Raises:

Type Description
ValueError

If period is not positive If offset is not between 0 and 1 If sigma is not positive

ema(data, period=9, alpha=None)

Exponential Moving Average (EMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9
alpha float

Smoothing factor. If None, alpha = 2/(period+1)

None

Returns:

Type Description
NDArray[float64]

Exponential moving average values

Raises:

Type Description
ValueError

If period is not positive

frama(data, period=9, fc_period=198)

Fractal Adaptive Moving Average (FRAMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9
fc_period int

Fractal cycle period

198

Returns:

Type Description
NDArray[float64]

Fractal adaptive moving average values

Raises:

Type Description
ValueError

If period or fc_period is not positive

hma(data, period=9)

Hull Moving Average (HMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9

Returns:

Type Description
NDArray[float64]

Hull moving average values

Raises:

Type Description
ValueError

If period is not positive

jma(data, period=9, phase=0)

Jurik Moving Average (JMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9
phase float

Phase parameter (-100 to 100)

0

Returns:

Type Description
NDArray[float64]

Jurik moving average values

Raises:

Type Description
ValueError

If period is not positive If phase is not between -100 and 100

kama(data, period=9, fast_period=2, slow_period=30)

Kaufman Adaptive Moving Average (KAMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the efficiency ratio calculation

9
fast_period int

Fast EMA period

2
slow_period int

Slow EMA period

30

Returns:

Type Description
NDArray[float64]

Kaufman adaptive moving average values

Raises:

Type Description
ValueError

If period is not positive If fast_period is not positive If slow_period is not positive If fast_period is not less than slow_period

laguerre_filter(data, gamma=0.8)

Laguerre Filter

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
gamma float

Damping factor (0-1)

0.8

Returns:

Type Description
NDArray[float64]

Laguerre filter values

Raises:

Type Description
ValueError

If gamma is not between 0 and 1

lsma(data, period=9)

Least Squares Moving Average (LSMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9

Returns:

Type Description
NDArray[float64]

Least squares moving average values

Raises:

Type Description
ValueError

If period is not positive

mcginley_dynamic(data, period=9, k=0.6)

McGinley Dynamic Indicator

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9
k float

Adjustment factor

0.6

Returns:

Type Description
NDArray[float64]

McGinley dynamic indicator values

Raises:

Type Description
ValueError

If period is not positive If k is not between 0 and 1

modular_filter(data, period=9, phase=0.5)

Modular Filter

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the filter

9
phase float

Phase parameter (0-1)

0.5

Returns:

Type Description
NDArray[float64]

Modular filter values

Raises:

Type Description
ValueError

If period is not positive If phase is not between 0 and 1

rdma(data)

Rex Dog Moving Average (RDMA)

This implementation follows the original RexDog definition, which is the average of six SMAs with periods 5, 9, 24, 50, 100, and 200.

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required

Returns:

Type Description
NDArray[float64]

Rex Dog moving average values

sma(data, period=9)

Simple Moving Average (SMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9

Returns:

Type Description
NDArray[float64]

Simple moving average values

Raises:

Type Description
ValueError

If period is not positive

smma(data, period=9)

Smoothed Moving Average (SMMA) or Running Moving Average (RMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9

Returns:

Type Description
NDArray[float64]

Smoothed moving average values

Raises:

Type Description
ValueError

If period is not positive

t3(data, period=9, vfactor=0.7)

Tillson T3 Moving Average

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9
vfactor float

Volume factor (0-1)

0.7

Returns:

Type Description
NDArray[float64]

T3 moving average values

Raises:

Type Description
ValueError

If period is not positive If volume factor is not between 0 and 1

tma(data, period=9)

Triangular Moving Average (TMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9

Returns:

Type Description
NDArray[float64]

Triangular moving average values

Raises:

Type Description
ValueError

If period is not positive

vama(data, volatility, period=9)

Volatility-Adjusted Moving Average (VAMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
volatility ArrayLike

Volatility data corresponding to price data

required
period int

Window size for the moving average

9

Returns:

Type Description
NDArray[float64]

Volatility-adjusted moving average values

Raises:

Type Description
ValueError

If period is not positive If price and volatility arrays have different lengths

vwma(data, volume, period=9)

Volume-Weighted Moving Average (VWMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
volume ArrayLike

Volume data corresponding to price data

required
period int

Window size for the moving average

9

Returns:

Type Description
NDArray[float64]

Volume-weighted moving average values

Raises:

Type Description
ValueError

If period is not positive If price and volume arrays have different lengths

wma(data, period=9)

Weighted Moving Average (WMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9

Returns:

Type Description
NDArray[float64]

Weighted moving average values

Raises:

Type Description
ValueError

If period is not positive

zlma(data, period=9)

Zero-Lag Moving Average (ZLMA)

Parameters:

Name Type Description Default
data ArrayLike

Input price data

required
period int

Window size for the moving average

9

Returns:

Type Description
NDArray[float64]

Zero-lag moving average values

Raises:

Type Description
ValueError

If period is not positive