Monte Carlo Simulation API
Monte Carlo option pricing model implementation.
hybrid_price_action_monte_carlo(option_type, underlying_price, strike_price, time_to_expiry, risk_free_rate, volatility, support_levels, resistance_levels, mean_reversion_params=None, jump_params=None, price_action_weight=0.4, mean_reversion_weight=0.3, jump_diffusion_weight=0.3, respect_level_strength=0.7, volatility_near_levels=1.3, simulations=10000, time_steps=252, dividend_yield=0.0, antithetic=True, seed=None)
A hybrid option pricing model that combines price action Monte Carlo with mean reversion and jump diffusion models.
This function creates a weighted average of three pricing models: 1. Price action Monte Carlo (respects support/resistance) 2. Mean reversion (if parameters provided) 3. Jump diffusion (if parameters provided)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
option_type
|
str
|
Type of option ('european_call', 'european_put', 'asian_call', 'asian_put', 'lookback_call', 'lookback_put') |
required |
underlying_price
|
float
|
Current price of the underlying asset |
required |
strike_price
|
float
|
Strike price of the option |
required |
time_to_expiry
|
float
|
Time to expiration in years |
required |
risk_free_rate
|
float
|
Risk-free interest rate (annualized) |
required |
volatility
|
float
|
Base volatility of the underlying asset (annualized) |
required |
support_levels
|
List[float]
|
List of price levels that act as support |
required |
resistance_levels
|
List[float]
|
List of price levels that act as resistance |
required |
mean_reversion_params
|
Dict
|
Parameters for mean reversion model: {'long_term_mean': float, 'mean_reversion_rate': float} |
None
|
jump_params
|
Dict
|
Parameters for jump diffusion: {'jump_intensity': float, 'jump_mean': float, 'jump_std': float} |
None
|
price_action_weight
|
float
|
Weight for the price action model (0-1) |
0.4
|
mean_reversion_weight
|
float
|
Weight for the mean reversion model (0-1) |
0.3
|
jump_diffusion_weight
|
float
|
Weight for the jump diffusion model (0-1) |
0.3
|
respect_level_strength
|
float
|
How strongly the price respects support/resistance levels (0-1) |
0.7
|
volatility_near_levels
|
float
|
Volatility multiplier when price is near support/resistance levels |
1.3
|
simulations
|
int
|
Number of Monte Carlo simulations |
10000
|
time_steps
|
int
|
Number of time steps in each simulation |
252
|
dividend_yield
|
float
|
Continuous dividend yield |
0.0
|
antithetic
|
bool
|
Whether to use antithetic variates for variance reduction |
True
|
seed
|
int
|
Random seed for reproducibility |
None
|
Returns:
Type | Description |
---|---|
dict
|
Dictionary containing the option price, standard error, and other information |
Raises:
Type | Description |
---|---|
ValueError
|
If weights do not sum to 1.0, or missing required parameters |
monte_carlo_option_pricing(option_type, underlying_price, strike_price, time_to_expiry, risk_free_rate, volatility, simulations=10000, time_steps=252, dividend_yield=0.0, antithetic=True, jump_intensity=0.0, jump_mean=0.0, jump_std=0.0, seed=None)
Price options using Monte Carlo simulation.
This function implements Monte Carlo simulation for pricing various types of options, including European, Asian, and lookback options. It also supports jump diffusion for modeling assets with sudden price jumps like cryptocurrencies.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
option_type
|
str
|
Type of option ('european_call', 'european_put', 'asian_call', 'asian_put', 'lookback_call', 'lookback_put') |
required |
underlying_price
|
float
|
Current price of the underlying asset |
required |
strike_price
|
float
|
Strike price of the option |
required |
time_to_expiry
|
float
|
Time to expiration in years |
required |
risk_free_rate
|
float
|
Risk-free interest rate (annualized) |
required |
volatility
|
float
|
Volatility of the underlying asset (annualized) |
required |
simulations
|
int
|
Number of Monte Carlo simulations, by default 10000 |
10000
|
time_steps
|
int
|
Number of time steps in each simulation, by default 252 |
252
|
dividend_yield
|
float
|
Continuous dividend yield, by default 0.0 |
0.0
|
antithetic
|
bool
|
Whether to use antithetic variates for variance reduction, by default True |
True
|
jump_intensity
|
float
|
Expected number of jumps per year (lambda in Poisson process), by default 0.0 |
0.0
|
jump_mean
|
float
|
Mean of the jump size distribution, by default 0.0 |
0.0
|
jump_std
|
float
|
Standard deviation of the jump size distribution, by default 0.0 |
0.0
|
seed
|
int
|
Random seed for reproducibility, by default None |
None
|
Returns:
Type | Description |
---|---|
dict
|
Option price and details |
Raises:
Type | Description |
---|---|
ValueError
|
If option_type is not valid, or prices are non-positive, or time to expiry is non-positive, or volatility is non-positive, or number of simulations or time steps are non-positive, or jump intensity or jump standard deviation are negative |
price_action_monte_carlo(option_type, underlying_price, strike_price, time_to_expiry, risk_free_rate, volatility, support_levels, resistance_levels, respect_level_strength=0.7, volatility_near_levels=1.3, simulations=10000, time_steps=252, dividend_yield=0.0, jump_intensity=0.0, jump_mean=0.0, jump_std=0.0, antithetic=True, seed=None)
Price options using Monte Carlo simulation with price action considerations.
This function extends the standard Monte Carlo simulation by incorporating technical analysis elements such as support and resistance levels. The price paths are adjusted to respect these levels, with increased volatility near levels and potential bounces or breakouts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
option_type
|
str
|
Type of option ('european_call', 'european_put', 'asian_call', 'asian_put', 'lookback_call', 'lookback_put') |
required |
underlying_price
|
float
|
Current price of the underlying asset |
required |
strike_price
|
float
|
Strike price of the option |
required |
time_to_expiry
|
float
|
Time to expiration in years |
required |
risk_free_rate
|
float
|
Risk-free interest rate (annualized) |
required |
volatility
|
float
|
Base volatility of the underlying asset (annualized) |
required |
support_levels
|
List[float]
|
List of price levels that act as support (in ascending order) |
required |
resistance_levels
|
List[float]
|
List of price levels that act as resistance (in ascending order) |
required |
respect_level_strength
|
float
|
How strongly the price respects support/resistance levels (0-1) 0 = no respect (standard Monte Carlo), 1 = strong respect |
0.7
|
volatility_near_levels
|
float
|
Volatility multiplier when price is near support/resistance levels |
1.3
|
simulations
|
int
|
Number of Monte Carlo simulations |
10000
|
time_steps
|
int
|
Number of time steps in each simulation |
252
|
dividend_yield
|
float
|
Continuous dividend yield |
0.0
|
jump_intensity
|
float
|
Expected number of jumps per year (lambda in Poisson process) |
0.0
|
jump_mean
|
float
|
Mean of the jump size distribution |
0.0
|
jump_std
|
float
|
Standard deviation of the jump size distribution |
0.0
|
antithetic
|
bool
|
Whether to use antithetic variates for variance reduction |
True
|
seed
|
int
|
Random seed for reproducibility |
None
|
Returns:
Type | Description |
---|---|
dict
|
Dictionary containing the option price, standard error, and other information |
Raises:
Type | Description |
---|---|
ValueError
|
If prices are non-positive, or time to expiry is non-positive, or volatility is non-positive, or number of simulations or time steps are non-positive, or jump intensity or jump standard deviation are negative, or respect level strength is not between 0 and 1, or volatility multiplier is non-positive |